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Abstract

The Divisive Normalization (DN) function has been described as a “canonical neural computation” in the
brain that achieves efficient representations of sensory and choice stimuli. Recent work shows that it
efficiently encodes a specific class of Pareto-distributed stimuli. Does the brain shift to different encoding
functions or is there evidence for DN encoding in other types of environments? In this paper, using a within-
subject choice experiment, we show evidence of the latter. Subjects made decisions in two distinct choice
environments with choice sets either drawn from a Pareto distribution or from a uniform distribution. Our
results indicate that subjects’ choices are better described by a divisive coding strategy in both
environments. Moreover, subjects appeared to calibrate a DN function to match, as closely as possible, the
actual statistical properties of each environment. These results suggest that divisive representations of

encoded stimuli may be inherent to the nervous system.
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Introduction

We make some decisions more often than others — in dozens of instances during our life, we choose
between having two regular dishes for dinner, but rarely have to indicate which of two acclaimed restaurants
we prefer. An often overlooked fact is that these encounter frequencies play a critical role in defining efficient
encoding strategies — given constraints on neural coding, more accurate encoding must generally be
allocated to more frequently encountered stimuli [1,2]. Indeed, experimental studies confirm this theoretical
insight, showing a dependency of preference orderings, choice patterns [3—7], and choice efficiency [3,8]
on the frequency with which subjects encounter different rewards.

This work has led to the conclusion that during the decision process, the brain adheres to principles
of efficient coding, allocating resources to optimize decision outcomes [3,8—13]. A canonical example of a
well-studied efficient code [13,14] is Divisive Normalization (henceforth DN) [15], which has been related
to neuronal firing rates across many sensory modalities [16—19] and across various cognitive domains as
well [20]. The DN function enables a system with limited information capacity to employ a flexible encoding
of naturally occurring stimuli that is sensitive to encounter frequency [17,21,22]. Ample evidence has
supported the notion that DN is also highly predictive of reward value encoding in the human and animal
choice mechanism [6,7,23—-25], although alternative value encoding mechanisms, some of which include
division, have also been suggested [26,27].

At least one form of DN has been analytically shown to be an efficient code for stimuli with a
probability of occurrence that is described by the asymmetrical heavy-tailed Pareto Type Il distribution (see
eq. (iv-vi) in Materials and Methods) [28]. This prompts the empirical question of whether the brain employs
non-DN encoding functions when the statistical properties of the input stimuli (in our case, choice
environments) are not Pareto-distributed. Would we expect to find evidence of divisive normalization across
dimensions [28], or divisive encoding mechanisms in general [13], only in Pareto-distributed environments?
The latter might imply that previous documentation of DN encoding mechanisms may say more about the
stimulus distributions used in experiments than about constraints on encoding mechanisms. An alternative
hypothesis, however, is that our brains are constrained to employ DN-like encoding mechanisms [13]. Such

a constraint might reflect an adaptation of the nervous system to Pareto-distributed real-world natural
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stimuli, such as the sensory [14,18,29] and even ecological [30,31] environments we typically encounter.
Our primary aim here is therefore to assess whether the encoding function itself is sensitive to
the structure of the environment — specifically, to differences in the shape of the distribution of valuations.

In this study, our subjects complete a two-stage task design. The first stage recovers subjects’
mapping of dollar amounts from objective to subjective values. These mappings are then used in the second
stage of the study, in which subjects face a binary-choice task where lotteries are drawn from two
individually-tailored environments characterized by different distributions of subjective lottery valuations. In
one environment, lottery valuations are Pareto-distributed, while in the other, lottery valuations are uniformly
distributed (Fig. 1A). Our novel task design controls for individual heterogeneity in subjects’ risk
preferences, thus ensuring that the second stage solely tests for contextual effects induced by the two
environments.

We test hypotheses about our subjects’ value encoding functions by fitting the patterns of errors in
their choices with two random expected utility models (henceforth, RUM) [32,33]. The first one is a form of
DN function designed for representation in risky choice [34]. As a non-DN benchmark, we use RUM with a
power utility function that nests within its parameterization a linear, a concave, and convex encoder
(henceforth, power utility; Fig 1B). Power utility is a common model in economic research for describing
risky choice and has been applied across many subfields, including experimental settings [35-38],
psychophysics [39], study of life-cycle consumption [40], and health [41]. (See [42] for a concise theoretical
discussion of why power utility is so widely adopted and often fits choice data better than other functional
forms.) Power utility is a natural comparator against which to evaluate DN.

We use a form of DN to examine if subjects are better described as obligate-DN choosers who use
DN in both environments, or alternatively, if subjects’ choices are better described with our DN function in
one environment and with a power utility function in the other (Fig 1C).

The form of DN we test incorporates information about the environment by tracking expected
valuations, allowing for context dependency in subjects’ value encoding. Because the median valuation in
the uniform environment is higher than in the Pareto environment, we further hypothesized that subjects

would anticipate higher valuations in the uniform case, evidenced by a calibration of the DN function.
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We find that in a Pareto-distributed environment, subjects employ an encoding of values that is well
modeled by DN. However, we also find that the DN model better captures subjects’ choices in the uniformly
distributed environment than does a standard power utility. This suggests that subjects’ choices are more
accurately described by divisive encoders, like those found in DN models, than by standard power utility
functions. We find further evidence for context dependency in subjects’ choices, as, within the constraints
of DN encoding, they adapt their reward expectations according to changes in the specific statistical
properties of the choice environment.

Taken together, our results suggest that divisive mechanisms may be an inherent component of
the encoding mechanism used during the choice process. Future work could generalize these findings to
other types of statistical environments. Finally, the current study focuses on decision-making processes,
but, given the dominance of DN representations across cortical systems, our findings may be of general

interest to the study of encoding mechanisms in sensory and other cognitive domains.

[Insert Fig 1 here]

Fig 1. Research Question. (A) Choice environments are determined by the distribution of valuations. We
compare a long-tailed bivariate Pareto Type Il environment with a uniformly distributed environment for
which DN is not an efficient code. Figures show 2D histograms of simulated choice trials with valuations in
the range u,, €[0, u*** = 60] for every lottery k {1,2}. Each reward’s value was drawn from 40 bins. Insets
show their corresponding marginal distributions. We simulate 100k valuations per environment. See
Materials and Methods for further details. (B) Value encoding choice functions. We test two different RUM
models: classic power utility (left) and DN (right). The figure shows the probability of choosing a lottery with
valuation u, over a lottery with valuation u, for various parameter values in each model. Insets show the
subjective representation of u, in power utility (R), and in DN (S). For every combination of u, and u,, we
simulate 1k binary choice sets. We allow stochasticity in choice by incorporating additive noise, drawn from

n~N(0,0.05 * R™%*(u1l), such that R™%*(u,) denotes the maximal subjective value of u1 in the power utility



118
119
120
121

122

123

124

125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142

model (and {~N(0,0.05 x S™**(u,) in the DN model, respectively). We cast 10K noisy draws per simulated
trial and reported average choice probabilities across simulated sets. (C) Contour plots indicate the mass
of occurrences of (uy,u,) choice trial combinations in each environment. Contours were laid over a

representative DN model with ¢ = 4, M = 30 (middle right panel in (B)).

Results

Two-stage task design

Seventy-six subjects completed a two-stage choice task. In STAGE | (Fig 2A left panel), subjects reported
their valuations (willingness to pay) for 33 50/50 lotteries that pay either y, or y, dollars with a probability
of 0.5 each (see S1 Table for a complete lottery list). These valuations were used to estimate, for every
subject /, the curvature parameter of the expected power utility specification: E[u;(y)] = 0.5y, + 0.5y,
using a standard non-linear least squares (NLS) estimation. We note that in STAGE I, our goal was not to
test normalization, but to flexibly capture heterogeneity in subjective valuations of lotteries (risk
preferences). We therefore employed the standard expected power utility function, which is the most widely
used and well-understood functional form for eliciting risk preferences [42].

The subjective value function curvature (p;) varied substantially from subject to subject (Fig 2E).
Using individual p, estimates, we generated subject-specific distributions of rewards in terms of their
subjective — rather than dollar — values for the STAGE Il task (Fig 2B). This first step was critical. It allowed
us to perform all our analyses in the domain of subjective value, removing simple utility curvature from our
primary analyses and allowing us to create individualized choice sets with specific distributional properties
that were essential for our design. Without this transformation, small subject-specific differences in utility
curvature (risk attitudes) would have made the construction of probative choice sets required for the
experiment impossible.

In STAGE lI, on two separate days, subjects made binary choices between 50/50 lotteries (Fig 2A,

right panel), with 320 decisions on each day. We created two choice environments: on one day, subjects
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were choosing between lotteries with subjective values drawn from a Pareto Type Il distribution
(henceforth, Pareto), and on the other day between lotteries with subjective values drawn from a uniform
distribution. Subjects encountered each distributional environment on a different day (counter-balanced
across subjects) to avoid contextual spillovers.

Using these risky-choice lotteries, rather than choices over consumer goods, enabled us to
generate continuous distributions of valuations for STAGE Il and to fully control their distributional shape.
Our decision to generate the distributions of STAGE Il lotteries in subjective value space, rather than in
dollar space, ensured that any observed environmental effects were not confounded by the heterogeneity
in subjects’ subjective valuations of lotteries, that is, their risk attitudes (Fig 2E and S2 Table). Consider
three subjects exposed to the same set of 50/50 lotteries with uniformly distributed dollar payoffs. Subject
1 is risk-seeking: subjective value grows slowly (convex subjective value function); Subject 2 is risk-averse:
subjective value grows more than proportionally (concave); Subject 3 is risk-neutral: subjective value is
linear in objective value. Now, imagine we created a choice environment with uniformly distributed 50/50
lottery payoffs (in dollar amount). The same uniform distribution would induce a left-skewed distribution of
subjective values in Subject 1, a right-skewed distribution in Subject 2, and only for Subject 3 does the
subjective value distribution remain uniform. Since what we wish to study is the subjective value distribution
rather than the expected value distribution, we must first factor out this heterogeneity. Our two-stage
procedure thus ensured that the shapes of the individually tailored distributions in STAGE Il are controlled
and comparable across subjects. This design is therefore crucial for valid between-subject comparisons of
environment-induced effects and for cleanly addressing our central questions: how statistical environments
shape the value-encoding function, and how well subjects adapt to these environments.

Across subjects, we fixed the first moment (mean) of valuations and the range of monetary payoffs
in both environments. Of course, this also fixed the second moment (standard deviation) of the uniform
distribution across subjects. The second moment of the Pareto distribution (as measured in dollars) varied
by subjects’ subjective valuations of money as assessed in STAGE | (risk attitudes) (Fig 2C, S1 Fig).
Accordingly, this heterogeneity also varied the distributions of the high and low monetary payoffs in each
lottery (S1 Fig). As a result, the median expected monetary payoff in each environment was fully determined

by subjects’ risk attitudes, so that the difference in expected payoffs between environments was smallest
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for risk-averse subjects (p; < 1, S4 Fig). To ensure that we fully captured each distributional environment,
we matched the mean and standard deviation of the choice sets with those of larger sets of 100k draws
(Fig 2D). See Materials and Methods for further details on our sampling design.

Overall, subjects appeared to pay careful attention during the study — only six subjects in the
uniform environment, and nineteen subjects in the Pareto environment failed to choose the higher
subjective value lottery in more than 20% of trials (S2 Fig). On average, subjects violated first-order
stochastic dominance in 0.97% of trials in the uniform treatment and in 1.08% of trials in the Pareto
treatment, respectively (S2 Fig). Note that a higher incidence of mistakes in the Pareto environment is
expected. The correlational structure across lotteries made the value difference between lotteries (on
average) smaller, and thus choices were harder in this case [43]. Finally, even though the experiment was
quite demanding (320 trials in each of the two sessions), subjects’ performance was not affected by fatigue.
The propensity to choose the lottery with the higher subjective value did not vary between the first and
second halves of each experimental session (Pareto sessions: p=0.2791, uniform sessions: p=0.5109,

paired t-test (df=75), S2 Fig).

[Insert Fig 2 here]

Fig 2. Experimental Design. (A) Timeline. In STAGE |, subjects reported their valuations for 33 lotteries.
Valuations were used to recover the curvature of the subjective value function for each subject using NLS
estimation. Based on those estimates, we generated subject-specific bi-dimensional uniform and Pareto
Type Il distributions of valuations for STAGE Il of the study. In STAGE II, subjects completed two sets of
320 binary choices between 50/50 lotteries (640 choices in total). (B) Bi-dimensional Pareto and Uniform
distributions. In the uniform distribution, we created 40 bins of subjective values between 0 and the maximal
payoff in the study ($60, u]"** = 60~:) with eight lotteries in each bin. We then picked pairs of lotteries from
this set to create binary choice sets. In the Pareto distribution, we used a Gamma-weighted scale mixture

of exponential random variables to capture the covariance structure of the bi-variate Pareto distribution. (C)
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Choice sets in STAGE Il controlled for differences in individual subjective value function (risk attitudes),
modulating the second moment (std) of the Pareto distribution (see eq. (vi) in Materials and Methods). The
histograms show the bi-dimensional Pareto distributions and their marginals (with 100k draws per
distribution) from three representative subjects: a risk averse subject (/eft), a risk neutral subject (middle),
and a risk seeking subject (right). (D) Experimental sets with 320 trials were prone to under-sampling (see
top, unmatched distribution). We matched experimental sets to the distributional shape of a larger set with
100k draws (see bottom, matched distributions). The figure shows an example corresponding to the middle
panel in (C). (E) Recovered estimates of subjective value curvature (risk attitudes) from STAGE I. See
Materials and Methods and S1 Fig for further details. See S2 Table for a list of the estimated subjective

value function curvatures (risk parameter p).

Distributional properties of the choice environments

influence subjects’ choice behavior

Our overarching goal was to study how the distributional properties of the choice environment influenced
the encoding of value, and whether subjects could flexibly switch between different types of encoding
mechanisms, as evidenced by errors in their choice patterns, in different environments. We created the
experimental choice environments with Pareto Type Ill and uniform distributions of valuations. In this
section, we tackle the first part of our research question in a model-free manner, determining whether the
distributional structure influenced the errors produced by our subjects in a meaningful manner.

It is useful to introduce our hypotheses using an illustration. In Fig 3A-B, we indicate the probability of
choosing the higher valued lottery, given the coupling of the (u,,u,) valuations in a choice set. Choices
along the diagonal represent trials in which the two lotteries had the same or very similar valuations,
whereas trials away from the diagonal correspond to choice sets in which the valuations of the two lotteries
were substantially different. A central feature of DN is the calibration of the function used to represent
subjective value (the decisional variable) to the input stimuli. That is, encoding/representational resources

are allocated to the range of stimuli most likely to be observed (funing) [15,25]. Thus, compared with non-
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divisive encoders, if DN governs the choice mechanism in a Pareto environment, we would expect subjects
in this case to make more mistakes in choice sets containing elements further from the high-density center
of the main diagonal, since these choices are less frequent. Conversely, we would also expect subjects in
the Pareto environment to make fewer mistakes in choice sets containing elements nearer the main
diagonal, since these choices occur more frequently. We find both patterns in our data.

To statistically test whether the frequency of mistakes grew faster as choice sets moved away from the
main diagonal in the Pareto environment, as compared with the uniform environment, we ran a probit
regression with an indicator dependent variable equal to one for trials on which a subject selected the option
with higher SV, and equal to zero otherwise. We controlled for the difference in difficulty across the trials
by including the absolute value difference between the lottery valuations (Ju, — u,|) and for the general
impact of the distribution by including a dummy for the Pareto distribution. The different rate of mistakes as
a function of the distance from the diagonal in each environment is captured by a significant coefficient on
the interaction of Pareto dummy and (Ju; — u,|) (Column (1) in Table 1). We found that choice accuracies
increased with an increase in the subjective value distance between the two options, and that moving from
the uniform distribution to the Pareto distribution reduced accuracy (see also discussion in the previous
section). Importantly, in line with our hypothesis, we found a negative and significant interaction term,
indicating that in the Pareto vs. the uniform case, subjects were more likely to make errors when
encountering choice sets further away from the diagonal -- those sets being experienced less often in the
Pareto environment. We conclude that encounter frequency, as defined by the Pareto distributional
structure, did influence choice accuracy.

To examine whether subjects calibrated their encoding function to the most frequently presented choice
sets, we tested if they made fewer mistakes around the high-density center of the main diagonal in the
Pareto environment. We ran a complementary probit regression focusing on twenty-two valuation bins from
the center of the distributions presented in Fig 3A-B (out of an equally-spaced 40-bin space), which
corresponded to lotteries with $9-$42 payoffs (Column (2) in Table 1). The center (medians) of the
distributions depended on subjects’ subjective valuations of dollar amounts (p parameter). In the Pareto

case, the smallest median was $11.45 and the highest was $33.58. Likewise, in the uniform case, the
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smallest median was $22.85 and the highest was $41.53. Thus, we set a range of $9-42 to include the
center of distributions for all the subjects in our sample.

Since this regression focuses on the center of the distributions, the SV difference between the two
lotteries is relatively small. Consequently, we excluded this variable from the model to avoid potential
multicollinearity with the main variables of interest. In addition to the Pareto dummy regressor included in
the baseline specification, we introduced a dummy variable indicating whether a lottery was located near
the diagonal of the valuation space, as well as an interaction of this dummy with the Pareto dummy.
Lotteries were defined as near the diagonal if the ratio between the two valuations satisfied
0.9 <u2/ul < 1.1.

Not surprisingly, choice accuracy was lower in choice sets around the diagonal, since these
represented the most difficult choices in the experiment and exhibited the smallest SV difference. Crucially,
we found a positive interaction term between the diagonal and Pareto dummies, suggesting that in the
Pareto vs. uniform environment, subjects had higher accuracy in those particularly difficult trials within the
highly sampled region.

A graphical illustration of this finding is depicted in Fig 3C, which plots the subject-level change in the
accuracy around the center of the distributions compared with their overall accuracy in each environment.
As expected, in both environments, we trace a decline in subjects’ accuracy around the center of the
distribution, since these are the most difficult trials in the experiment, though this decline is more moderate
in the Pareto environment than in the uniform environment (one-sided paired t-test, p<0.0001).

In the supplementary materials, we present two robustness analyses supporting these results. S7 Table
replicates the findings from Table 1, using a Bernoulli specification in which the mean is constrained to the
interval [0.5, 1) rather than the standard probit model. This specification addresses potential discontinuities
in the model below chance level (50%) as the SV difference approaches zero. In addition, S3 Table
demonstrates that the results reported in Column (2) of Table 1 remain robust when applying alternative
definitions of the “center of the distribution” and “around the diagonal” regions.

Together, these results suggest that in the Pareto environment, subjects adjusted their value encoding

to increase choice accuracy rates at the center of the joint distribution, at the expense of the decreased

11



279
280
281
282
283
284
285
286
287
288
289

choice accuracy at the margins. This is suggestive evidence for some forms of divisive value encoding,

where choice discriminability is the highest near the median of the distribution.

Table 1. Results from the model-free analysis. Probit regressions with the dependent variable equal to
1 when the subject chose the lottery with the higher SV, and zero otherwise. Column (1) model was run on
the full sample. The independent variables are the absolute SV difference between the two lotteries, a
dummy indicating the Pareto environment, and their interaction. Column (2) model was run on data
including choice sets in the center of the distributions. The model includes a dummy for the Pareto
distribution, an additional dummy equal to 1 if the lottery was taken from around the diagonal (and zero
otherwise, see text for definitions), and their interaction. Standard errors clustered on subject in

parentheses, * p<0.05, ** p<0.01, *** p<0.001.

(1) ()

Full Center of the
sample distributions
SV difference 0.0002*
(0.0001)
Pareto -0.3311* -0.1587***
(0.0405) (0.0381)
Pareto*SV difference -0.0001*
(0.0001)
Near diagonal -0.7376***
(0.0683)
Pareto*Near diagonal 0.1839**
(0.0602)
Constant 1.3260*** 1.1175**
(0.0704) (0.0703)
N 48640 22442

12
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pseudo R-sq 0.015 0.034

[Insert Fig 3 here]

Fig 3. Model-free evidence for DN encoding. (A-B) Probability of choosing the higher-valued lottery given
(uy, u,) valuations in a choice set. Data is aggregated over subjects. Within subjects, valuations are divided
into 40 equally spaced bins. (A) The Pareto environment. (B) The uniform environment. (C) The change in
the propensity to choose the higher-valued lottery around the center of the distribution, defined as bins
#5-25 along the SV space diagonal, with a band of three bins below and above the main diagonal (illustrated

by the dashed rectangles at the bottom). N=76.

Evidence for DN-like value encoding across choice

environments

The findings in the previous section provided initial evidence that subjects adapted to the distribution of
valuations and that subjects used some form of divisive encoding in the Pareto environment. The DN model
enables subjects to focus their resources on the center (median) of the distributions — those valuations that
they are more likely to encounter. By contrast, in the uniform environment, subjects are less likely to
encounter these valuations, making DN encoding less beneficial. Nevertheless, such encoding would still
yield different choice patterns from those under standard power utility. Hence, our next goal was to evaluate

whether subjects used the same or different encoding mechanisms in each of the two environments.

To answer this question, we tested which of two expected utility models — a form of DN, or power utility
— better captures subjects’ choices. The DN model is regarded as a canonical encoding mechanism in the
brain [15-17,19], including in the choice domain [7,24,25,44], and has been considered an efficient encoder
[1,9,13,45]. One variant of the DN model (cross-normalized) has been proven to efficiently encode Pareto

distributed environments [28].
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We estimate a form of DN model that has been used to study risky choice behavior [34]. (See [46] for
modeling subjects’ behavior in the same dataset with alternative DN specifications.) In this DN model,

subject i's STAGE |l subjective value function of a lottery k e {1,2} with payoffs x, , or x,,is given by:

Q) Sik=0 5 (i (g )% +05 (u(x, 1)) %

. - a; . - a; Ei k
(wiCer ) i+M; (uiCez ) i+M; ’

where ai is a curvature parameter, ui(-) is subject i's STAGE I's power utility function (i.e., u;(x;,) =
xfj{), M is a reward expectation parameter, and ¢; , is an additive decision noise drawn in each trial from a
zero-mean normal distribution, such that ¢;, ~ N(0, 6,y). The encodings of the two marginals are then

combined using the 50/50 risk probabilities to arrive at the overall formula. In line with the previous set of

results, we expected some form of DN encoding in the Pareto environment.

The second model we examined was a power utility model, a common model in describing risky choice

behavior [42], applied here to subjective rather than monetary values:

(i) Rix = 0.5(wi(xrp))" +0.5(w;(0z0))" + i

The model has one free parameter (r;), which captures the function’s curvature. When r; = 1, the
function is linear. As in our DN model, we included an additive decision noise drawn in each trial from a
zero-mean normal distribution, such that ni~ N(0,6,). A consequence of our design — positive-payoff 50/50
lotteries — is that Prospect Theory [47] and this model coincide.

For every subject, we estimated both models using maximum-likelihood estimation (see Materials and
Methods). The subject-specific recovered parameters are reported in S4 Table, and the sample medians
are in Table 2. To determine, at the population level, which model better captured subjects’ choice patterns
in each environment, we compared each subject’'s Bayesian Information Criterion (BIC) scores across the
two models in each environment. Options in the uniform environment had, on average, larger value
difference, and responses in this environment were more accurate (S2 Fig) and less noisy (S3 Fig).
Therefore, we only compared BIC scores of the two models within the same environment, and did not

compare the models across the two environments.
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In line with our hypothesis, we found that in the Pareto environment, subjects’ BIC scores were on
average significantly lower, indicating a better model fit, for the DN model than for the power utility model
(Fig 4A, one-sided Wilcoxon sign-rank test, Z=4.4603, p<0.0001). This was true for 48 subjects (out of 76).
In the uniform environment, we, again, found that the BIC scores were on average significantly lower for
the DN model (Fig 3D, one-sided Wilcoxon sign-rank test, Z=2.9692, p=0.0015) and this held for 42 (out of
76) subjects. Among the subjects who had a lower BIC score for the DN model in one of the environments
(41 in uniform, 48 in Pareto), 31 subjects, i.e., roughly three-quarters of each group of subjects, exhibited
consistent preference for the DN model across the two environments. Fewer subjects (17) had consistently
lower BIC scores for the power utility model in both environments.

Moreover, for only four subjects, the curvature parameter in the power utility model was estimated as
linear or as almost linear (r; = 1+0.05). The mean and median r estimates were 0.608 and 0.366,
respectively. Importantly, the asymmetrical distributions of the differences in BIC scores (see insets in Fig
4A-B) indicate that while both models do (almost) equally well for most subjects, there is a group of subjects
for whom the DN model predicts their choices much better (ABIC>20 for 29 subjects in Pareto and 18
subjects in uniform).

For a further comparison, we also recovered the pooled (aggregate) model parameters. S5 Table
presents the recovered pooled estimates from this analysis. Note that this analysis could only be done in
monetary space, so as to allow comparability of lotteries across subjects, and to recover meaningful
estimates of the M parameter in the DN model. Here, too, we find that the DN model captured subjects’
choices better, evidenced by the lower BIC scores under aggregation of choices from both treatments
(leftmost column), as well as within each environment (second and third columns). These results should be
interpreted cautiously, since the reward distributions were not fully controlled in the monetary space (S1
Fig).

Next, we directly examined whether the DN model fully contextualizes information about the
environment. We re-estimated subjects’ choices using the DN specification in Eq. (i), setting M equal to the
true median of the subjective valuations encountered within each statistical environment (see Materials and
Methods). At the aggregate level, the DN model with fixed M provided a better fit than the power utility

model, as indicated by a lower BIC (S5 Table, column 1). When analyzed by environment, this advantage
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persisted in the uniform case but not in the Pareto case (S5 Table, columns 2—3). Subject-level analyses
mirrored this pattern (S5 Fig): In the uniform environment, BIC scores were significantly lower for the DN
model (one-sided paired t-test, {(75) = 1.735, p = 0.0434), whereas in the Pareto environment, the two
models performed comparably ({75) = 0.975, p = 0.1663). This analysis is, nevertheless, less suited to
testing our main hypothesis because fixing M does not allow for partial adaptation. The model’s relative
success in the uniform environment underscores the value of DN-like contextual choice models compared
with non-contextual models.

Another way to examine the effect of the distributional environment on subjects’ value-encoding — and
to validate our task design — is to assess the relationship between subjects’ subjective valuation estimates
from STAGE | (p, see Fig 2E) and the STAGE Il parameters: o in the DN model, and r in the power utility
model. The estimated parameters in STAGE |l are multiplicative combinations of the STAGE | parameters.
Therefore, if participants were not adjusting to the environment, we would simply find that in STAGE I, and
independent of the environment, a power utility model with the exponent equal to one (i.e. r; = 1) would fit
the data best. Figs 4C-4F suggest that this is not the case, further indicating that the environments
influenced subjects’ value encoding — specifically through capturing the residual curvature attributable to
changes in the statistical environment. We also note that the two sets of parameters were fit on different
datasets: p, was recovered from STAGE | data, whereas ¢; and r; were recovered from STAGE Il data,
thereby highlighting that the STAGE Il parameters can be attributed to environmentally induced effects.

Given the nature of our design, a hyperbolic relationship between STAGE | p and the STAGE Il
parameters (i.e., the function y = 1/x) would imply that STAGE | curvature is undone in STAGE Il in both
models. In the power utility model, this would also imply linear encoding of monetary payoffs (because
(xP)"°=x). In contrast, in DN, it would mean that all curvature in STAGE Il is associated with the DN
encoding.

Fig 4C-F plots STAGE Il parameters against STAGE | p, highlighting two key findings: (a) the scatter
of points away from the hyperbolic function (y = 1/x) indicates that there remains a residual curvature
attributable to the statistical environments, and (b) in both the Pareto and uniform environments, the
relationship between p and the DN parameter (Figs 4C and 4E) is considerably closer to hyperbolic than

that between p and the power utility r parameter (Figs 4D and 4F). This suggests that, although the
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environments further modified the curvature of the encoding function, the DN function better captured
STAGE II's subjective value functions. To quantify this effect, we compared the root-mean-squared errors
(RMSE) between the hyperbolic function and the parameters in both models and confirmed that across the
two environments, the « parameter of the DN model was more likely to exhibit this hyperbolic relationship
(o: Pareto: RMSE=0.6491, uniform: RMSE=0.6585; r: Pareto: RMSE=0.8109, uniform: RMSE=0.8588).
Taken together, all these results strengthen the notion that subjects used DN-like encoding of value in

both environments.

Table 2. Median estimates.

Power utility model DN model
Parameter r 0, BIC a M Opn BIC
Uniform 0.379 0.054 121.120 1.299 23.216 0.0233 104.670
Pareto 0.528 0.103 184.761 1.358 18.875 0.026 154.482
[Insert Fig 4 here]

Fig 4. Model-fitting. (A-B) Each dot is one subject’s DN model BIC score (y-axis) plotted against the same
subject’s power utility BIC score (x-axis). A dashed 45-degree line indicates when both models are equally
successful. Inset shows the difference in BIC scores (BICyoyer — BICpy). (A) The Pareto environment. (B)
The uniform environment. (C-D) Relationship between the STAGE | curvature of the subjective value
function (p) and STAGE Il subjective value functions in the Pareto environment. The dashed curve indicates
a hyperbolic function y = 1/x. (C) DN model (« parameter). (D) Power utility model (r parameter). (E-F).
Same as (C-D), but for the uniform environment. Dots indicate individual subjects, + indicate the sample

averages. N=76.

17



416

417

418
419
420
421
422
423
424
425
426
427
428
429
430
431
432

433
434
435
436
437
438
439
440
441

Context-dependency: adaptation of the encoding function to

the choice environment

Our next aim was to examine whether subjects calibrated their encoding functions according to the
properties of the two different environments. We found that, for all subjects in our sample, the medians of
the subjective valuations in the uniform environment were higher than in the Pareto environment (sample
medians: 18.721 vs. 14.723 util units, respectively, A= 3.998, one-sided Wilcoxon sign-rank test between
subject-specific medians, Z=7.572, p<0.0001). The reward expectation M in the DN model tracks the
median of the reward distribution, and hence, we hypothesized it would be higher in the uniform
environment. Consistent with this hypothesis, the sample median of the recovered M parameters in the
uniform case was higher by 4.99 (in utility units) than in the Pareto case (Table 2, also corroborated by a
one-sided Wilcoxon sign-rank test, Z=2.8907, p=0.0019). This difference between the recovered M
parameters was very close to the actual difference between the distributions’ medians, indicating that
subjects, at least at the sample-level, quite precisely calibrated their encoding to the difference in reward
expectation. On the subject level, we found that for 44 out of 76 subjects estimated M was higher in the
uniform environment (Fig 5A).

We also examined how the change in recovered M across environments related to the true

difference in median payoffs. To make these parameters comparable, we expressed M in dollar units

1

(i.e., M; = Mf_i)- Perhaps counterintuitively, we found a negative correlation between the two measures
(r =-0.279, p = 0.015; S4 Fig), indicating that larger differences in true payoffs across environments were
estimated as smaller differences in M. However, this negative correlation arises mechanically from the
relationship between median payoffs and subjects’ risk preferences (the p parameter). This result is further
supported by the positive correlation between p and AM; (r = 0.311, p = 0.006; S4 Fig).

Our pooled estimation supports this conclusion with higher estimates of M in the uniform
environment (M (uniform) = 66.653 and M(Pareto) = 55.561, second and third columns in S4 Table,
p<0.001. As a robustness check, we estimated the DN model using the full dataset with the data from both

environments and included an additive dummy variable for the Pareto environment in the estimation of the
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M parameter (M = constant + Myg.e, x Pareto). The output of this model split M into a constant,
corresponding to the estimate of M for the uniform environment, and an additional coefficient M,,,,.., that
captured the difference in M in the Pareto relative to the uniform environment. We found M., to be
negative and significant (p<0.001), indicating M was lower in the Pareto environment.

As an additional test of subjects’ adaptation to the two statistical environments, we examined the
stability of the M parameter. Firstly, we tested whether the statistical structure in the uniform environment
may have been less informative for choosers employing the DN model. As a result, the recovered M values
would be noisier than in the Pareto environment. To allow interpretability of M across subjects, we focused
on the pooled estimates in dollar space. Indeed, we found that the standard error of M estimate was
substantially larger in the uniform vs. the Pareto environment (15.31 vs. 9.01, S5 Table), suggesting that
subjects had greater difficulty calibrating the M parameter to the uniform environment.

Secondly, we tested whether a longer exposure to a given statistical environment led to more
precise estimates of M. For each environment, we estimated M for early trials (#1-160) and late trials (#161-
320), separately in each session (S6 Table). We found that in the Pareto environment, the
recovered M values did not change significantly (54.6 in early trials vs. 56.5 in late trials). By contrast, in
the uniform environment, we observed substantial within-session variability, and the
recovered M decreased from 75.2 in early trials to 59.5 in later ones. Notably, the latter estimate is closer
to that of the Pareto environment, though still somewhat higher, reflecting the relative differences in the
environments’ actual medians. These two results provide additional evidence that subjects calibrated to the
statistical structure of both environments.

In contrast to the M parameter, we had no prior hypotheses regarding the model's curvature
parameter «. Nevertheless, comparing subject-specific estimates, we found that, on average, the «
parameter was higher by 0.1593 in the Pareto environment (one-sided Wilcoxon sign-rank test, Z=1.9987,
p=0.0228, Fig 5B). This result may indicate that higher « values in the Pareto environment allowed better
discriminability between the more frequently encountered lottery options, as also indicated by our model-
free analysis (Table 1). However, this result was not fully replicated in the pooled estimates. When
estimating each environment separately, we found that recovered parameters were almost identical

(Cuniform = 0.93, aparero = 0.92, S4 Table, second and third columns). A full model with random effect for
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the Pareto environment (similarly to the one run on M) revealed that there was a tuning of the function
curvature when switching between environments (S4 Table, rightmost column, p<0.001).

The power utility model is not designed to capture the dependence of the subjective value function
on the distribution of valuations and hence, we did not anticipate an adaptation of the function’s curvature.
Indeed, when comparing estimates of r across the two environments, we obtain inconclusive results. While
the pooled estimates indicated higher r values in the Pareto environment (S4 Table), the subject-level
estimates pointed in the opposite direction (Fig 5C, one-sided Wilcoxon sign-rank test between subject-
level estimates of r, Z=0.051, p=0.480).

To conclude, we found that subjects adapted the parameters of the DN encoding function to the

two environments in line with our hypothesis, showing context dependency in choice.

[Insert Fig 5 here]

Fig 5. Cross-environment adaptation. (A-B) Adaptation of the encoding function in the DN model. (A)
Best-fitting M parameter in the uniform (x-axis) vs. the Pareto (y-axis) environments. Estimates of M’s are
in utility space. Left inset: outliers. Right (diagonal) inset: Difference in the estimates of M across choice
environments (Myniform — Mpareto)- INSets do not show three additional (risk-seeking) subjects whose M'’s
are >400 (in util units). Dots indicate individual subjects, + indicate sample average without the inset
outliers, N=76. (B) same as (A) for the DN’s « parameter. (C) Adaptation of the encoding function in the
power utility model. Same as (B), but for the r parameter from the power utility model. (B-C) Dots indicate

individual subjects, + indicate sample average, N=76.
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Discussion

In this study, we tested how the distributional properties of choice environments affect value encoding. In
particular, we were interested in whether the subjective value of rewards is encoded via a mechanism such
as divisive normalization (DN) exclusively in the Pareto environments akin to those for which it is probably
efficient [28], or whether a DN representation is also employed in environments characterized by different
reward distributions. To this end, we designed an experiment in which subjects were asked to make choices
in two distinct statistical environments. In one environment, rewards were drawn from a Pareto distribution
of valuations, while in the other environment, valuations were uniformly distributed.

Our results indicate that subjects in our study were better described as using a DN mechanism
than a power utility mechanism to encode the subjective value of rewards, regardless of which of our two
distributions the rewards were drawn from. As expected, the key parameter of the model tracked the median
of the distribution. A model-free analysis indicated that, as compared with the uniform environment, subjects
in the Pareto environment made fewer mistakes when choice sets were drawn from the center of the
distribution at the expense of the margins, in accordance with a principal property of the DN function. We
then fitted our subjects’ choices with two RUMs — a RUM with a DN-like utility function and the other a
standard RUM with a power utility function. Our subject-level and pooled model-fitting results suggested
that the DN model better captured subjects’ choice patterns in both the Pareto and the uniform
environments (Table 2, Fig 5C-D and S5 Table). In line with the actual statistical properties of the two
environments, subjects had higher reward expectations in the uniform environment. Taken together, these
findings suggest that subjects’ choices were affected by the context of the choice environment, and that
their choices were better described by DN-like divisive encoders than a more standard power utility model

(Fig 6).

[Insert Fig 6 here]

Fig 6. Summary of main findings.
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One reason to see DN encoding, even across environments, is that Pareto distributions are very
common in the real world, and the human brain has evolved a mechanism that accords well with natural
environments. Indeed, numerous sensory stimuli are characterized by Pareto-like statistical properties
[1,14,18,29]. On a larger scale, Pareto distributions also describe various ecological quantities, such as
temporal and spatial measures of biodiversity [48-51]. More relevant to value-based decisions is that
certain economic and financial variables in modern societies [52,53], including consumption of several
categories of consumer goods [54], have Pareto-like properties.

Another important finding is that, compared with the standard utility functions used in economics,
DN provides the brain with a rather flexible tool for the representation of choice options [34,44]. Given the
specific parameterization we employed for DN, our model embeds the standard concave utility function, but
is also suitable for capturing preferences that follow S-shaped functions, similar to the one suggested by
Prospect Theory [55] with expectations-based reference dependence [56]: The M parameter in the DN
model tracks the median of rewards (expectations), which allows for scale-invariant adjustments to different
environments, while ensuring a fine discrimination between stimuli that are in the center of the distribution
[2,9,13,57]. These adjustments — also evident in our data — give rise to spatial and temporal context effects
in choice processes [25,44,58-62], and are also the core reason for some notable perceptual illusions
[63,64].

Our findings also imply that some choice patterns should not be regarded as built-in decision
biases, errors, or mistakes. Rather, they reflect adjustments of the brain, as a constrained system, to its
environment, thus reflecting a rational value-encoding mechanism [2,13]. Such an observation can explain
the under-sampling of rare events when subjects adjust to new choice environments [65,66] since the main
focus of the system is on the mass of occurrences.

Our primary aim in the current study was to assess whether the encoding function was sensitive to
the distributional structure of the environment. Future work could vary both distributional shapes and their
means (in a factorial design) for a targeted test of adaptation to study which environmental statistic underlies
normalized encoding. Another interesting question that stems directly from our research is to what extent
our results generalize beyond decision-making processes to other cognitive functions, such as sensory

processing. Even though various natural sensory stimuli are described by Pareto-like properties [14,18,57],
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547  we also frequently encounter, and are required to process, non-natural non-Pareto stimuli [67,68]. Our
548  findings, therefore, invite further investigation into the effects of DN encoding on the sensory processing of
549  non-Pareto stimuli.

550
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Materials and methods

Some of the data in this manuscript have been used in the conference paper in reference [46].

Experimental design

Valuation task (STAGE I)

Our goal was to establish whether the brain employs different value encoding models in environments with
different reward distributions. To eliminate any additional prior heterogeneity in subjects’ subjective
valuations of money, we generated distributions of rewards in the subjective value (SV) space instead in
dollar amounts (or expected values). To map the subject-specific SV space, we first recovered individual-
specific subjective value functions over dollar amounts. To do this, in STAGE I, we used a valuation task,
in which subjects reported their willingness to pay to participate in a lottery. See S1 Table for the list of 33
lotteries used in this task. On each trial, subjects were presented with a visualization of a 50-50 lottery on
the computer screen and had to type in their willingness to pay to participate in it as a dollar amount (Fig
2A). For each lottery, the valuation could range between the current lottery’s minimal and maximal payoff,
in $0.10 increments. All subjects completed the same 33 trials in an order randomized at the subject level.
At the end of the session, the realization of one randomly selected trial was implemented for payment, using

a Becker—DeGroot—Marschak (BDM) [69] procedure which was designed to elicit truthful valuations.

Choice task (STAGE Il). STAGE Il was designed to test whether the distribution of rewards (lotteries with
different subjective valuations) in a choice environment affects what value encoding model subjects use.
Subjects were asked to choose the 50-50 lottery they preferred from two available options that varied from
trial to trial. Lottery payoffs ranged between $0 and $60 in $0.10 increments. Overall, subjects made 640
binary choices that were divided into two blocks of 320 trials each and presented on subsequent days. Our
experimental manipulation was that in each block, the valuations were drawn either from a Pareto Type Il
distribution or from a uniform distribution (Fig 2A-B). The order in which subjects experienced these

environments was counter-balanced across subjects. One trial was randomly selected for payment at the
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end of each experimental session. Subjects also completed additional 640 trials with six-option choice sets
with lottery valuations drawn either from a Pareto Type Ill or uniform distributions. Thus, in total, in each
environment subjects encountered two 320 choice blocks. The six-option blocks were designed to examine
another research question that is beyond the scope of the current study and will be reported in a separate
paper. Blocks were presented in an order randomized across subjects but on a given day, all blocks were
drawn from the same distribution. Payments for STAGE Il included a realization of one choice from each

of the two sessions, and could be drawn either from the two-options sets or from the six-options sets.

Subjective Value of Money. We used each subject’'s STAGE | single lottery valuations to estimate their
subjective value function over money. We expressed each subject i's subjective value of a 50-50 lottery

that paid y, or y, each equally likely, using an expected power utility function as:
(iii) E[u;(5)] = 0.5y{* + 0.5y}

If the curvature parameter p, < 1, then subject i is risk-averse. When p, = 1, the subject is risk-neutral. If

p; > 1, the subject is risk-seeking. Therefore, the certainty equivalents (c) that participants stated were

converted to subjective values using the same power utility function such that ¢ = E[ui(y)]l/p . We ran an

NLS regression to estimate the p parameter separately for each subject.

We used the subject’s’ estimated p,, to pick different combinations of lottery dollar payoffs to create

lotteries that had a specific SV to that individual. This enabled us to generate sets of lotteries whose implied
SV distributions matched our target distributions (see below), regardless of individual differences in the

curvature of the subjective value function.

Distributions of valuations

Uniform Distributions of SVs. For each subject i, we computed the upper bound of the distribution as the
SV of the maximal possible monetary payoff in the study, which was $60 (i.e., u]*** = 607:). We then divided

the range [0,u/*] into 40 equally-spaced SV increments. For each of the increments, we created eight
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different lotteries, which would give the subject the subjective value in exactly this bracket (for a total of 320
lotteries). Since the joint distribution of a two-dimensional uniform distribution is independent, and hence

determined by its marginals, we then picked pairs of lotteries from this set for generating binary choice sets.

Pareto Type lll Distributions of SVs. In the Pareto treatment, subjective lottery valuations are drawn from
a bivariate Pareto distribution with a joint pdf fui(ui,lﬂui,z) given, for every subject i and ke{1,2}

enumerating the choice option within the choice set (see Eq. 7 in reference [28], with n1=0 to match the

lower bound of the uniform distribution and to avoid negative valuations), by

Moz )

<1+zi:1(;‘§—:]’:)ﬁ)3

(iv) fui(ui,l' ui,z) =p?

Its marginals are log-logistic (or Fisk) distributions, with pdf

L(“i_.k)ﬁ_l
(V) fui_k (ui,k) = 5%-
()
We matched, for each subject, the conditional mean to the expectation of the uniform distribution, which
was $30 (and i, = 30° in SV-space); the conditional mean is given, for 3>1/2, by
1, B+1
E)F(T)

. wil\P VB ro-
(vi) E(ui,k|ui,l) =0ik 1+ (_) o ,Vk #1

il

where T denotes the Gamma function. We set = 3, and solve for o;.
Following Proposition 4 in [28] and using the subject-specific parameterization, we generated the

random variables following Pareto Type Il distributions as

[

vii) wie = o (35)7, fork e (1,2)

Zj
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where Y ,~Exp(1=1) and Z;~Exp(4 = 1) independently of all Y;,. Fig 2C presents three examples for
such distributions with different values for p,.

Note that using only 320 draws may lead to under-sampling of the distributions. Therefore, to fully
capture the shape of the distribution, for each subject, we first generated joint Pareto distributions with 100K
draws. We then created small 600-draw experimental distributions that matched the large 100k-draw
distributions, allowing a deviation of up to 0.2 utils from the actual first and second moments (mean and
standard deviation) of the large 100k-draws sets. Fig 2D compares matched and unmatched small sets,
corresponding to the large 100k-draws set presented in Fig 2C (middle panel). Finally, we truncated the
long tail of the Pareto Type Ill distributions at u*** = 607 (eliminating 6.5 to 23.83 percent of the
distribution, depending on the p parameter, the curvature of the subjective value function), to match the
upper bound of the uniform distribution and to avoid extreme reward amounts. We then sampled 320 SVs
at random from the remaining valuations, which constituted the experimental subject-specific Pareto

distributions.

Generating Binary Choice Sets from the Distributions of Valuations. The final step was to generate
lottery dollar amounts from the SV distributions. For each lottery k with a valuation v, we first randomly
drew the first monetary payoff x, , from a range of possible payoffs $0-x"2*in $0.10 increments. We had to
restrict the maximum value of x, , to make sure that including it in the lottery, does not exceed the lottery
valuation (u,), and thus to avoid negative values for the second lottery payoff. We determined the maximal

value of the first payoff x, , using the minimum function:

1
(viii) x% = min {(2u)?, 60}.

We then solved for x,, giving rise to the desired u,, rounded to one decimal place, using the following

equation:

(ix) xp = (Zuk - (xl,k)p)z-

S1 Fig shows how the heterogeneity in p values affected the distributions of x; , and x, .
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We restricted the share of trials with first-order stochastic dominance (FOSD) (trials on which both
lottery payoffs of one lottery were higher or equal to the other lottery’s payoffs) to 45 percent. For subjects
with p,.—0, we could not generate experimental sets with only 45 percent of the trials. Thus, we fixed
p; =1, for all subjects with p, < 0., (a total of 4 subjects, see S2 Table), limiting the interoperability of data
from this small number of subjects. In contrast, for two subjects with very high p's (p, > 4), we also had to
fix p, = 1 in STAGE Il of the study, since a very large tail from their Pareto distribution of SVs exceeded
$60. Respectively, the interoperability of data from these subjects is also limited. Nonetheless, we wanted
to avoid any unjustified elimination of data, and therefore analyzed data from these six subjects. Importantly,

our main qualitative findings do not change once we remove these subjects from our sample.

Procedures

Sessions

Experimental sessions were carried out online via Zoom while subjects completed the task on a website.
Data collection took place between autumn 2021 and summer 2022. After instruction, subjects had to
successfully answer a set of comprehension questions about the procedure before starting STAGE |. They
could participate in STAGE Il of the study only if they completed all trials in STAGE I. Subjects received all
payments after completing both STAGE | and STAGE Il. Subjects received a $10 participation fee and on
average $24.5 in STAGE | (range $0-60) and $76.02 in STAGE Il (range $7.3-120) from the decision task.
All amounts are in Australian dollars. All parts of the experiment were self-paced. Both the valuation and

the choice tasks were programmed in the oTree software package [70].

Ethics statements

The study was approved by the local ethics committee at the University of Sydney. All subjects gave

informed written consent before participating in the study.
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Participants

We recruited participants from various departments at the University of Sydney. Seventy-six subjects (44
females, mean age=21.8, std: 3.34, range: 18-30) passed the comprehension questions and completed

STAGE | and the two choice tasks of STAGE II.

Model Fitting

Sample-level (pooled) estimates. We estimated subjects’ aggregated choice data via a probit choice
function with maximum likelihood estimation (MLE). Standard errors were clustered at the subject level.
Thus, in the pooled estimation subjects were treated as one representative decision-maker. In this analysis,
we used lotteries’ monetary rewards (as opposed to their subjective valuations) to allow meaningful
estimates of DN's M parameter, and to confine the range of lottery payoffs. For both DN and power utility
models, we report the results from models estimated on the full dataset and separately on each choice
environment. To test the possibility of adaptation of the encoding function to the choice environments, we
further report the results from three additional models estimated on the full dataset, which also included a
dummy variable indicating the Pareto environment for the reward expectation, M parameter (DN) as
M = constant + Mpgy,.:, X Pareto and similarly for the functions’ curvature parameters « (DN) and r

(power utility), respectively.

Subject-level estimates. DN. In each choice environment, we recovered subject-specific estimates of the
free parameters, restricting the search space as follows: a<[0,1.5], M €[0, u{***] and 6 > 0 (see equation (i)
in the text). We employed MLE using the Nelder-Mead algorithm with a max-iteration limit of 1,000 and a
stopping criterion of 0.5 tolerance. We initialized M to the distributions’ medians. 6 was initialized at 0.03,
matching the sample-level pooled estimate (see S5 Table), and the a parameter was initialized at 1. For
calculating the likelihoods, in each of the 320 trials, we generated 10,000 samples with randomly drawn

Gaussian noise. The log-likelihood function was thus given by —

(x) logL(ai' Mi'9i|ui,t) = y;log (PT(Yi,t = 1|ui,t)) +(1- yi,t)log(Pr(yi,t = 0|ui,t))s
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Where y; . = {0,1} indicates the subject’s j choice in trial t = {1, ...,320}.

Power utility. We fitted the power utility model to recover subject-specific estimates of the r and &
parameters using a similar procedure. We restricted the search space as follows: r £{0,1.5}, and 8 > 0 (see
equation (ii) in the text). 8 was initialized at 0.03, matching the sample-level pooled estimate (see S5 Table).
For the r parameter, we took ten random initializations in the range {0.1,5} with a precision of 5. All other

procedures were identical to the DN model.
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Supplementary Information

S1 Fig. Representative Sets in STAGE Il. Left — a risk averse subject, middle — a risk neutral subject,
right — a risk seeking subject. Top to bottom: (1) Distributions of the high winning amount in Lottery 1 (in
dollars); (2) Distributions of the low winning amount in lottery 1 (in dollars); (3) Distribution of the expected
earnings (EV) of Lottery 1 (in dollars); (4) Distributions of the valuations (u1) of Lottery 1 (in util units); (5)

2-dimensional histogram of the valuations of Lottery 1 and Lottery 2 (u1 and uz, in util units).

S2 Fig. Descriptive statistics. (A) violins show the share of trials in which subjects chose the lottery with
the higher subjective value. (B) violins show the number of FOSD violations per subject. Dots indicate
individual subjects. N=76. (C-D) Share of trials in which subjects chose the lottery with the higher SV, first
half of the session (trials 1-160), compared with the second half of the session (trials 161-320). Each gray
line indicates a subject. Colored lines are sample averages. (C) Pareto distribution sessions. (D) Uniform

distribution sessions.

S3 Fig. Noise estimates. Comparing the best-fitting ¢ parameter (decision noise) across the distributional
environments reveals noise levels were higher in the Pareto environment. Left - DN model (one-sided
Wilcoxon sign-rank test, Z=2.2314, p=0.0257). Right - Power Utility model (one-sided Wilcoxon sign-rank

test, Z=2.9172, p=0.0035). Scatters indicate individual subjects. N=76.

S4 Fig. Distributions’ medians. (A-B) Distributions of median payoffs (in dollar amounts), (A) Pareto, (B)
uniform. (C) median of monetary payoffs across environments vs subjects’ risk preferences, captured by
the p parameter from STAGE I. (D) change in the true median of monetary payoffs across environments vs
subjects’ p parameter (scatters are equivalent to the grey lines in (C)). (E) Change in the true median payoff
across environments compared with the change in the recovered M; parameter across the two
environments. (F) Subjects’ risk (p parameter) compared with the change in the recovered M; parameter

across the two environments. (D-F) Each scatter represents one subject. N=76.

S5 Fig. Model-fitting, Power utility compared with a DN model where M is fixed. Top - Each dot is one

subject’s DN model BIC score (y-axis) plotted against the same subject’'s power utility BIC score (x-axis).
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A dashed 45-degree line indicates when both models are equally successful. Bottom - the difference in BIC
scores (BlCpower — BICon). Left panels show the uniform environment, and right shows the Pareto

environment.

S1 Table. Lotteries used in STAGE I.

S2 Table. Individual-level estimates of risk preferences from subjects’ bids in STAGE I. (*) For these
subjects we could not generate distributions of valuations for STAGE Il that would adhere to our
requirement to limit the number of trials with FOSD violations (when pi—0), or without having to censor a
very large tail of the Pareto distribution (when pi>4). Instead, for these subjects we plugged-in pi=1 to

generate the distributions for STAGE II.

S3 Table. Robustness checks for the findings presented in Column (2) in Table 1. We vary the
definitions for center of the distributions (center) and around the diagonal (diagonal). Column (1)

corresponds to the regression presented in the Main Text.

S4 Table. Individual-level best-fitting model parameters across environments (STAGE Il). (*) Subjects
who had either a STAGE | estimate of pi=0 or pi>4. For those subjects, we could not generate distributions
of valuations for STAGE Il that would adhere to our requirement to limit the number of trials with FOSD
violations (when pi—0), or without having to censor a very large tail of the Pareto distribution (when pi>4).
Instead, for these subjects we plugged-in pi=1 to generate the distributions for STAGE II.

(**) Subjects who had >20 FOSD violations in at least one of the treatments.

S5 Table. Pooled estimates, dollar space. The table shows recovered parameters for the DN model (top
rows), the DN model where M is fixed as the true median of the distributions (middle rows), and the Power
utility model (bottom rows). In practice, to allow a better identification of the model parameters, we estimated
the parameter t, such that t=M“. We recovered M post-hoc by simply plugging-in t and o into the equation.

Standard errors in parentheses, + p<0.1, * p<0.05, ** p<0.01, *** p<0.001.

S6 Table. Behavioral dynamics of fitted parameters. Pooled estimates in dollar space, early vs late trials

in each statistical environment. In practice, to allow a better identification of the model parameters, we
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estimated the parameter t, such that t=M®. We recovered M post-hoc by simply plugging-in T and a into

the equation. Standard errors in parentheses, + p<0.1, * p<0.05, ** p<0.01, *** p<0.001.

S7 Table. Model-free analysis, alternative model. Same analysis as in Table 1, while controlling for
potential discontinuity in the model. MLE estimation with a Bernoulli model where the inverse link cannot
drop below the chance level (0.5), such thatp; = 0.5 + 0.5 @ (x;'B). Variables and specifications are identical

to Table 1. Standard errors clustered on subject in parentheses, + p<0.1, * p<0.05, ** p<0.01, *** p<0.001.
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