

1 **Research Article**

2 **A tale of two environments: divisive normalization and the (in)flexibility of
3 choice**

4 **Short title: Divisive Normalization and Flexibility of Choice**

5 Vered Kurtz-David^{1,2*}, Shreya Sinha¹, Vinayak Alladi^{3,4}, Stefan Bucher^{5,6}, Adam Brandenburger^{7,8,9},
6 Kenway Louie^{1,10}, Paul Glimcher^{1,10¶} and Agnieszka Tymula^{3¶}.

7 ¹ Neuroscience Institute, NYU Langone, New York, NY, USA.

8 ² The Bogen Family Department of Economics, Hebrew University of Jerusalem, Jerusalem, Israel.

9 ³ School of Economics, University of Sydney, Sydney, NSW, Australia.

10 ⁴ The World Bank Group, Washington, DC, USA.

11 ⁵ Faculty of Economics, University of Cambridge, Cambridge, United Kingdom.

12 ⁶ Max Planck Institute for Biological Cybernetics, Tübingen, Germany.

13 ⁷ Stern School of Business, New York University, New York, NY, USA.

14 ⁸ Tandon School of Engineering, New York University, New York, NY, USA.

15 ⁹ NYU Shanghai, Shanghai, China.

16 ¹⁰ Center for Neural Science, New York University, New York, NY, USA.

17 *Corresponding author

18 **Email:** vered.kurtz@mail.huji.ac.il

19 ¶ equally contributing senior authors.

20 **Keywords:** decision-making, efficient coding, divisive normalization, risky choice

21

22 **Abstract**

23 The Divisive Normalization (DN) function has been described as a “canonical neural computation” in the
24 brain that achieves efficient representations of sensory and choice stimuli. Recent work shows that it
25 efficiently encodes a specific class of Pareto-distributed stimuli. Does the brain shift to different encoding
26 functions or is there evidence for DN encoding in other types of environments? In this paper, using a within-
27 subject choice experiment, we show evidence of the latter. Subjects made decisions in two distinct choice
28 environments with choice sets either drawn from a Pareto distribution or from a uniform distribution. Our
29 results indicate that subjects’ choices are better described by a divisive coding strategy in both
30 environments. Moreover, subjects appeared to calibrate a DN function to match, as closely as possible, the
31 actual statistical properties of each environment. These results suggest that divisive representations of
32 encoded stimuli may be inherent to the nervous system.

33

34

35

36 Introduction

37 We make some decisions more often than others – in dozens of instances during our life, we choose
38 between having two regular dishes for dinner, but rarely have to indicate which of two acclaimed restaurants
39 we prefer. An often overlooked fact is that these encounter frequencies play a critical role in defining efficient
40 encoding strategies – given constraints on neural coding, more accurate encoding must generally be
41 allocated to more frequently encountered stimuli [1,2]. Indeed, experimental studies confirm this theoretical
42 insight, showing a dependency of preference orderings, choice patterns [3–7], and choice efficiency [3,8]
43 on the frequency with which subjects encounter different rewards.

44 This work has led to the conclusion that during the decision process, the brain adheres to principles
45 of *efficient coding*, allocating resources to optimize decision outcomes [3,8–13]. A canonical example of a
46 well-studied efficient code [13,14] is Divisive Normalization (henceforth DN) [15], which has been related
47 to neuronal firing rates across many sensory modalities [16–19] and across various cognitive domains as
48 well [20]. The DN function enables a system with limited information capacity to employ a flexible encoding
49 of naturally occurring stimuli that is sensitive to encounter frequency [17,21,22]. Ample evidence has
50 supported the notion that DN is also highly predictive of reward value encoding in the human and animal
51 choice mechanism [6,7,23–25], although alternative value encoding mechanisms, some of which include
52 division, have also been suggested [26,27].

53 At least one form of DN has been analytically shown to be an efficient code for stimuli with a
54 probability of occurrence that is described by the asymmetrical heavy-tailed Pareto Type III distribution (see
55 eq. (iv-vi) in Materials and Methods) [28]. This prompts the empirical question of whether the brain employs
56 non-DN encoding functions when the statistical properties of the input stimuli (in our case, *choice*
57 *environments*) are not Pareto-distributed. Would we expect to find evidence of divisive normalization across
58 dimensions [28], or divisive encoding mechanisms in general [13], only in Pareto-distributed environments?
59 The latter might imply that previous documentation of DN encoding mechanisms may say more about the
60 stimulus distributions used in experiments than about constraints on encoding mechanisms. An alternative
61 hypothesis, however, is that our brains are constrained to employ DN-like encoding mechanisms [13]. Such
62 a constraint might reflect an adaptation of the nervous system to Pareto-distributed real-world natural

63 stimuli, such as the sensory [14,18,29] and even ecological [30,31] environments we typically encounter.
64 Our primary aim here is therefore to assess whether the encoding function itself is sensitive to
65 the structure of the environment – specifically, to differences in the shape of the distribution of valuations.

66 In this study, our subjects complete a two-stage task design. The first stage recovers subjects'
67 mapping of dollar amounts from objective to subjective values. These mappings are then used in the second
68 stage of the study, in which subjects face a binary-choice task where lotteries are drawn from two
69 individually-tailored environments characterized by different distributions of subjective lottery valuations. In
70 one environment, lottery valuations are Pareto-distributed, while in the other, lottery valuations are uniformly
71 distributed (Fig. 1A). Our novel task design controls for individual heterogeneity in subjects' risk
72 preferences, thus ensuring that the second stage solely tests for contextual effects induced by the two
73 environments.

74 We test hypotheses about our subjects' value encoding functions by fitting the patterns of errors in
75 their choices with two random expected utility models (henceforth, RUM) [32,33]. The first one is a form of
76 DN function designed for representation in risky choice [34]. As a non-DN benchmark, we use RUM with a
77 power utility function that nests within its parameterization a linear, a concave, and convex encoder
78 (henceforth, power utility; Fig 1B). Power utility is a common model in economic research for describing
79 risky choice and has been applied across many subfields, including experimental settings [35–38],
80 psychophysics [39], study of life-cycle consumption [40], and health [41]. (See [42] for a concise theoretical
81 discussion of why power utility is so widely adopted and often fits choice data better than other functional
82 forms.) Power utility is a natural comparator against which to evaluate DN.

83 We use a form of DN to examine if subjects are better described as obligate-DN choosers who use
84 DN in both environments, or alternatively, if subjects' choices are better described with our DN function in
85 one environment and with a power utility function in the other (Fig 1C).

86 The form of DN we test incorporates information about the environment by tracking expected
87 valuations, allowing for context dependency in subjects' value encoding. Because the median valuation in
88 the uniform environment is higher than in the Pareto environment, we further hypothesized that subjects
89 would anticipate higher valuations in the uniform case, evidenced by a calibration of the DN function.

90

91 We find that in a Pareto-distributed environment, subjects employ an encoding of values that is well
92 modeled by DN. However, we also find that the DN model better captures subjects' choices in the uniformly
93 distributed environment than does a standard power utility. This suggests that subjects' choices are more
94 accurately described by divisive encoders, like those found in DN models, than by standard power utility
95 functions. We find further evidence for context dependency in subjects' choices, as, within the constraints
96 of DN encoding, they adapt their reward expectations according to changes in the specific statistical
97 properties of the choice environment.

98 Taken together, our results suggest that divisive mechanisms may be an inherent component of
99 the encoding mechanism used during the choice process. Future work could generalize these findings to
100 other types of statistical environments. Finally, the current study focuses on decision-making processes,
101 but, given the dominance of DN representations across cortical systems, our findings may be of general
102 interest to the study of encoding mechanisms in sensory and other cognitive domains.

103

104

105 *[Insert Fig 1 here]*

106

107 **Fig 1. Research Question.** (A) Choice environments are determined by the distribution of valuations. We
108 compare a long-tailed bivariate Pareto Type III environment with a uniformly distributed environment for
109 which DN is not an efficient code. Figures show 2D histograms of simulated choice trials with valuations in
110 the range $u_k \in [0, u_i^{max} = 60]$ for every lottery $k \in \{1,2\}$. Each reward's value was drawn from 40 bins. Insets
111 show their corresponding marginal distributions. We simulate 100k valuations per environment. See
112 Materials and Methods for further details. (B) Value encoding choice functions. We test two different RUM
113 models: classic power utility (left) and DN (right). The figure shows the probability of choosing a lottery with
114 valuation u_1 over a lottery with valuation u_2 for various parameter values in each model. Insets show the
115 subjective representation of u_1 in power utility (R), and in DN (S). For every combination of u_1 and u_2 , we
116 simulate 1k binary choice sets. We allow stochasticity in choice by incorporating additive noise, drawn from
117 $\eta \sim N(0, 0.05 * R^{max}(u_1))$, such that $R^{max}(u_1)$ denotes the maximal subjective value of u_1 in the power utility

118 model (and $\zeta \sim N(0, 0.05 * S^{max}(u_1))$ in the DN model, respectively). We cast 10K noisy draws per simulated
119 trial and reported average choice probabilities across simulated sets. (C) Contour plots indicate the mass
120 of occurrences of (u_1, u_2) choice trial combinations in each environment. Contours were laid over a
121 representative DN model with $\alpha = 4$, $M = 30$ (middle right panel in (B)).

122

123 **Results**

124 **Two-stage task design**

125 Seventy-six subjects completed a two-stage choice task. In STAGE I (Fig 2A left panel), subjects reported
126 their valuations (willingness to pay) for 33 50/50 lotteries that pay either y_1 or y_2 dollars with a probability
127 of 0.5 each (see S1 Table for a complete lottery list). These valuations were used to estimate, for every
128 subject i , the curvature parameter of the expected power utility specification: $E[u_i(y)] = 0.5y_1^{\rho_i} + 0.5y_2^{\rho_i}$,
129 using a standard non-linear least squares (NLS) estimation. We note that in STAGE I, our goal was not to
130 test normalization, but to flexibly capture heterogeneity in subjective valuations of lotteries (risk
131 preferences). We therefore employed the standard expected power utility function, which is the most widely
132 used and well-understood functional form for eliciting risk preferences [42].

133 The subjective value function curvature (ρ_i) varied substantially from subject to subject (Fig 2E).
134 Using individual ρ_i estimates, we generated subject-specific distributions of rewards in terms of their
135 subjective – rather than dollar – values for the STAGE II task (Fig 2B). This first step was critical. It allowed
136 us to perform all our analyses in the domain of subjective value, removing simple utility curvature from our
137 primary analyses and allowing us to create individualized choice sets with specific distributional properties
138 that were essential for our design. Without this transformation, small subject-specific differences in utility
139 curvature (risk attitudes) would have made the construction of probative choice sets required for the
140 experiment impossible.

141 In STAGE II, on two separate days, subjects made binary choices between 50/50 lotteries (Fig 2A,
142 right panel), with 320 decisions on each day. We created two choice environments: on one day, subjects

143 were choosing between lotteries with subjective values drawn from a Pareto Type III distribution
144 (henceforth, Pareto), and on the other day between lotteries with subjective values drawn from a uniform
145 distribution. Subjects encountered each distributional environment on a different day (counter-balanced
146 across subjects) to avoid contextual spillovers.

147 Using these risky-choice lotteries, rather than choices over consumer goods, enabled us to
148 generate *continuous* distributions of valuations for STAGE II and to fully control their *distributional shape*.
149 Our decision to generate the distributions of STAGE II lotteries in subjective value space, rather than in
150 dollar space, ensured that any observed environmental effects were not confounded by the heterogeneity
151 in subjects' subjective valuations of lotteries, that is, their risk attitudes (Fig 2E and S2 Table). Consider
152 three subjects exposed to the same set of 50/50 lotteries with uniformly distributed dollar payoffs. Subject
153 1 is risk-seeking: subjective value grows slowly (convex subjective value function); Subject 2 is risk-averse:
154 subjective value grows more than proportionally (concave); Subject 3 is risk-neutral: subjective value is
155 linear in objective value. Now, imagine we created a choice environment with uniformly distributed 50/50
156 lottery payoffs (in dollar amount). The same uniform distribution would induce a left-skewed distribution of
157 subjective values in Subject 1, a right-skewed distribution in Subject 2, and only for Subject 3 does the
158 subjective value distribution remain uniform. Since what we wish to study is the subjective value distribution
159 rather than the expected value distribution, we must first factor out this heterogeneity. Our two-stage
160 procedure thus ensured that the *shapes* of the individually tailored distributions in STAGE II are controlled
161 and comparable across subjects. This design is therefore crucial for valid between-subject comparisons of
162 environment-induced effects and for cleanly addressing our central questions: how statistical environments
163 shape the value-encoding function, and how well subjects adapt to these environments.

164 Across subjects, we fixed the first moment (mean) of valuations and the range of monetary payoffs
165 in both environments. Of course, this also fixed the second moment (standard deviation) of the uniform
166 distribution across subjects. The second moment of the Pareto distribution (as measured in dollars) varied
167 by subjects' subjective valuations of money as assessed in STAGE I (risk attitudes) (Fig 2C, S1 Fig).
168 Accordingly, this heterogeneity also varied the distributions of the high and low monetary payoffs in each
169 lottery (S1 Fig). As a result, the median expected monetary payoff in each environment was fully determined
170 by subjects' risk attitudes, so that the difference in expected payoffs between environments was smallest

171 for risk-averse subjects ($\rho_i < 1$, S4 Fig). To ensure that we fully captured each distributional environment,
172 we matched the mean and standard deviation of the choice sets with those of larger sets of 100k draws
173 (Fig 2D). See Materials and Methods for further details on our sampling design.

174 Overall, subjects appeared to pay careful attention during the study – only six subjects in the
175 uniform environment, and nineteen subjects in the Pareto environment failed to choose the higher
176 subjective value lottery in more than 20% of trials (S2 Fig). On average, subjects violated first-order
177 stochastic dominance in 0.97% of trials in the uniform treatment and in 1.08% of trials in the Pareto
178 treatment, respectively (S2 Fig). Note that a higher incidence of mistakes in the Pareto environment is
179 expected. The correlational structure across lotteries made the value difference between lotteries (on
180 average) smaller, and thus choices were harder in this case [43]. Finally, even though the experiment was
181 quite demanding (320 trials in each of the two sessions), subjects' performance was not affected by fatigue.
182 The propensity to choose the lottery with the higher subjective value did not vary between the first and
183 second halves of each experimental session (Pareto sessions: $p=0.2791$, uniform sessions: $p=0.5109$,
184 paired t-test ($df=75$), S2 Fig).

185

186

187 *[Insert Fig 2 here]*

188

189

190 **Fig 2. Experimental Design.** (A) Timeline. In STAGE I, subjects reported their valuations for 33 lotteries.
191 Valuations were used to recover the curvature of the subjective value function for each subject using NLS
192 estimation. Based on those estimates, we generated subject-specific bi-dimensional uniform and Pareto
193 Type III distributions of valuations for STAGE II of the study. In STAGE II, subjects completed two sets of
194 320 binary choices between 50/50 lotteries (640 choices in total). (B) Bi-dimensional Pareto and Uniform
195 distributions. In the uniform distribution, we created 40 bins of subjective values between 0 and the maximal
196 payoff in the study (\$60, $u_i^{max} = 60^{\rho_i}$) with eight lotteries in each bin. We then picked pairs of lotteries from
197 this set to create binary choice sets. In the Pareto distribution, we used a Gamma-weighted scale mixture
198 of exponential random variables to capture the covariance structure of the bi-variate Pareto distribution. (C)

199 Choice sets in STAGE II controlled for differences in individual subjective value function (risk attitudes),
200 modulating the second moment (std) of the Pareto distribution (see eq. (vi) in Materials and Methods). The
201 histograms show the bi-dimensional Pareto distributions and their marginals (with 100k draws per
202 distribution) from three representative subjects: a risk averse subject (*left*), a risk neutral subject (*middle*),
203 and a risk seeking subject (*right*). (D) Experimental sets with 320 trials were prone to under-sampling (see
204 top, unmatched distribution). We matched experimental sets to the distributional shape of a larger set with
205 100k draws (see bottom, matched distributions). The figure shows an example corresponding to the middle
206 panel in (C). (E) Recovered estimates of subjective value curvature (risk attitudes) from STAGE I. See
207 Materials and Methods and S1 Fig for further details. See S2 Table for a list of the estimated subjective
208 value function curvatures (risk parameter ρ).

209

210 **Distributional properties of the choice environments**

211 **influence subjects' choice behavior**

212 Our overarching goal was to study how the distributional properties of the choice environment influenced
213 the encoding of value, and whether subjects could flexibly switch between different types of encoding
214 mechanisms, as evidenced by errors in their choice patterns, in different environments. We created the
215 experimental choice environments with Pareto Type III and uniform distributions of valuations. In this
216 section, we tackle the first part of our research question in a model-free manner, determining whether the
217 distributional structure influenced the errors produced by our subjects in a meaningful manner.

218 It is useful to introduce our hypotheses using an illustration. In Fig 3A-B, we indicate the probability of
219 choosing the higher valued lottery, given the coupling of the (u_1, u_2) valuations in a choice set. Choices
220 along the diagonal represent trials in which the two lotteries had the same or very similar valuations,
221 whereas trials away from the diagonal correspond to choice sets in which the valuations of the two lotteries
222 were substantially different. A central feature of DN is the calibration of the function used to represent
223 subjective value (the decisional variable) to the input stimuli. That is, encoding/representational resources
224 are allocated to the range of stimuli most likely to be observed (*tuning*) [15,25]. Thus, compared with non-

225 divisive encoders, if DN governs the choice mechanism in a Pareto environment, we would expect subjects
226 in this case to make more mistakes in choice sets containing elements further from the high-density center
227 of the main diagonal, since these choices are less frequent. Conversely, we would also expect subjects in
228 the Pareto environment to make fewer mistakes in choice sets containing elements nearer the main
229 diagonal, since these choices occur more frequently. We find both patterns in our data.

230 To statistically test whether the frequency of mistakes grew faster as choice sets moved away from the
231 main diagonal in the Pareto environment, as compared with the uniform environment, we ran a probit
232 regression with an indicator dependent variable equal to one for trials on which a subject selected the option
233 with higher SV, and equal to zero otherwise. We controlled for the difference in difficulty across the trials
234 by including the absolute value difference between the lottery valuations ($|u_1 - u_2|$) and for the general
235 impact of the distribution by including a dummy for the Pareto distribution. The different rate of mistakes as
236 a function of the distance from the diagonal in each environment is captured by a significant coefficient on
237 the interaction of Pareto dummy and ($|u_1 - u_2|$) (Column (1) in Table 1). We found that choice accuracies
238 increased with an increase in the subjective value distance between the two options, and that moving from
239 the uniform distribution to the Pareto distribution reduced accuracy (see also discussion in the previous
240 section). Importantly, in line with our hypothesis, we found a negative and significant interaction term,
241 indicating that in the Pareto vs. the uniform case, subjects were more likely to make errors when
242 encountering choice sets further away from the diagonal -- those sets being experienced less often in the
243 Pareto environment. We conclude that encounter frequency, as defined by the Pareto distributional
244 structure, did influence choice accuracy.

245 To examine whether subjects calibrated their encoding function to the most frequently presented choice
246 sets, we tested if they made fewer mistakes around the high-density center of the main diagonal in the
247 Pareto environment. We ran a complementary probit regression focusing on twenty-two valuation bins from
248 the center of the distributions presented in Fig 3A-B (out of an equally-spaced 40-bin space), which
249 corresponded to lotteries with \$9-\$42 payoffs (Column (2) in Table 1). The center (medians) of the
250 distributions depended on subjects' subjective valuations of dollar amounts (ρ parameter). In the Pareto
251 case, the smallest median was \$11.45 and the highest was \$33.58. Likewise, in the uniform case, the

252 smallest median was \$22.85 and the highest was \$41.53. Thus, we set a range of \$9-42 to include the
253 center of distributions for all the subjects in our sample.

254 Since this regression focuses on the center of the distributions, the SV difference between the two
255 lotteries is relatively small. Consequently, we excluded this variable from the model to avoid potential
256 multicollinearity with the main variables of interest. In addition to the Pareto dummy regressor included in
257 the baseline specification, we introduced a dummy variable indicating whether a lottery was located near
258 the diagonal of the valuation space, as well as an interaction of this dummy with the Pareto dummy.
259 Lotteries were defined as near the diagonal if the ratio between the two valuations satisfied
260 $0.9 < u2/u1 < 1.1$.

261 Not surprisingly, choice accuracy was lower in choice sets around the diagonal, since these
262 represented the most difficult choices in the experiment and exhibited the smallest SV difference. Crucially,
263 we found a positive interaction term between the diagonal and Pareto dummies, suggesting that in the
264 Pareto vs. uniform environment, subjects had higher accuracy in those particularly difficult trials within the
265 highly sampled region.

266 A graphical illustration of this finding is depicted in Fig 3C, which plots the subject-level change in the
267 accuracy around the center of the distributions compared with their overall accuracy in each environment.
268 As expected, in both environments, we trace a decline in subjects' accuracy around the center of the
269 distribution, since these are the most difficult trials in the experiment, though this decline is more moderate
270 in the Pareto environment than in the uniform environment (one-sided paired t-test, $p < 0.0001$).

271 In the supplementary materials, we present two robustness analyses supporting these results. S7 Table
272 replicates the findings from Table 1, using a Bernoulli specification in which the mean is constrained to the
273 interval [0.5, 1) rather than the standard probit model. This specification addresses potential discontinuities
274 in the model below chance level (50%) as the SV difference approaches zero. In addition, S3 Table
275 demonstrates that the results reported in Column (2) of Table 1 remain robust when applying alternative
276 definitions of the "center of the distribution" and "around the diagonal" regions.

277 Together, these results suggest that in the Pareto environment, subjects adjusted their value encoding
278 to increase choice accuracy rates at the center of the joint distribution, at the expense of the decreased

279 choice accuracy at the margins. This is suggestive evidence for some forms of divisive value encoding,
280 where choice discriminability is the highest near the median of the distribution.

281

282 **Table 1. Results from the model-free analysis.** Probit regressions with the dependent variable equal to
283 1 when the subject chose the lottery with the higher SV, and zero otherwise. Column (1) model was run on
284 the full sample. The independent variables are the absolute SV difference between the two lotteries, a
285 dummy indicating the Pareto environment, and their interaction. Column (2) model was run on data
286 including choice sets in the center of the distributions. The model includes a dummy for the Pareto
287 distribution, an additional dummy equal to 1 if the lottery was taken from around the diagonal (and zero
288 otherwise, see text for definitions), and their interaction. Standard errors clustered on subject in
289 parentheses, * p<0.05, ** p<0.01, *** p<0.001.

	(1)	(2)
	Full sample	Center of the distributions
SV difference	0.0002* (0.0001)	
Pareto	-0.3311*** (0.0405)	-0.1587*** (0.0381)
Pareto*SV difference	-0.0001* (0.0001)	
Near diagonal		-0.7376*** (0.0683)
Pareto*Near diagonal		0.1839** (0.0602)
Constant	1.3260*** (0.0704)	1.1175*** (0.0703)
N	48640	22442

	pseudo R-sq	0.015	0.034
--	-------------	-------	-------

290

291

292 *[Insert Fig 3 here]*

293

294 **Fig 3. Model-free evidence for DN encoding.** (A-B) Probability of choosing the higher-valued lottery given
 295 (u_1, u_2) valuations in a choice set. Data is aggregated over subjects. Within subjects, valuations are divided
 296 into 40 equally spaced bins. (A) The Pareto environment. (B) The uniform environment. (C) The change in
 297 the propensity to choose the higher-valued lottery around the center of the distribution, defined as bins
 298 #5-25 along the SV space diagonal, with a band of three bins below and above the main diagonal (illustrated
 299 by the dashed rectangles at the bottom). N=76.

300

301 **Evidence for DN-like value encoding across choice**

302 **environments**

303 The findings in the previous section provided initial evidence that subjects adapted to the distribution of
 304 valuations and that subjects used some form of divisive encoding in the Pareto environment. The DN model
 305 enables subjects to focus their resources on the center (median) of the distributions – those valuations that
 306 they are more likely to encounter. By contrast, in the uniform environment, subjects are less likely to
 307 encounter these valuations, making DN encoding less beneficial. Nevertheless, such encoding would still
 308 yield different choice patterns from those under standard power utility. Hence, our next goal was to evaluate
 309 whether subjects used the same or different encoding mechanisms in each of the two environments.

310 To answer this question, we tested which of two expected utility models – a form of DN, or power utility
 311 – better captures subjects' choices. The DN model is regarded as a canonical encoding mechanism in the
 312 brain [15–17,19], including in the choice domain [7,24,25,44], and has been considered an efficient encoder
 313 [1,9,13,45]. One variant of the DN model (cross-normalized) has been proven to efficiently encode Pareto
 314 distributed environments [28].

315 We estimate a form of DN model that has been used to study risky choice behavior [34]. (See [46] for
 316 modeling subjects' behavior in the same dataset with alternative DN specifications.) In this DN model,
 317 subject i 's STAGE II subjective value function of a lottery $k \in \{1,2\}$ with payoffs $x_{1,k}$ or $x_{2,k}$ is given by:

318 (i)
$$S_{i,k} = 0.5 \frac{(u_i(x_{1,k}))^{\alpha_i}}{(u_i(x_{1,k}))^{\alpha_i} + M_i^{\alpha_i}} + 0.5 \frac{(u_i(x_{2,k}))^{\alpha_i}}{(u_i(x_{2,k}))^{\alpha_i} + M_i^{\alpha_i}} + \varepsilon_{i,k}$$

319 where α_i is a curvature parameter, $u_i(\cdot)$ is subject i 's STAGE I's power utility function (i.e., $u_i(x_{1,k}) =$
 320 $x_{1,k}^{\rho_i}$), M is a reward expectation parameter, and $\varepsilon_{i,k}$ is an additive decision noise drawn in each trial from a
 321 zero-mean normal distribution, such that $\varepsilon_{i,k} \sim N(0, \theta_{DN})$. The encodings of the two marginals are then
 322 combined using the 50/50 risk probabilities to arrive at the overall formula. In line with the previous set of
 323 results, we expected some form of DN encoding in the Pareto environment.

324 The second model we examined was a power utility model, a common model in describing risky choice
 325 behavior [42], applied here to subjective rather than monetary values:

326 (ii)
$$R_{i,k} = 0.5(u_i(x_{1,k}))^{r_i} + 0.5(u_i(x_{2,k}))^{r_i} + \eta_{i,k}$$

327 The model has one free parameter (r_i), which captures the function's curvature. When $r_i = 1$, the
 328 function is linear. As in our DN model, we included an additive decision noise drawn in each trial from a
 329 zero-mean normal distribution, such that $\eta_i \sim N(0, \theta_p)$. A consequence of our design – positive-payoff 50/50
 330 lotteries – is that Prospect Theory [47] and this model coincide.

331 For every subject, we estimated both models using maximum-likelihood estimation (see Materials and
 332 Methods). The subject-specific recovered parameters are reported in S4 Table, and the sample medians
 333 are in Table 2. To determine, at the population level, which model better captured subjects' choice patterns
 334 in each environment, we compared each subject's Bayesian Information Criterion (BIC) scores across the
 335 two models in each environment. Options in the uniform environment had, on average, larger value
 336 difference, and responses in this environment were more accurate (S2 Fig) and less noisy (S3 Fig).
 337 Therefore, we only compared BIC scores of the two models within the same environment, and did not
 338 compare the models across the two environments.

339 In line with our hypothesis, we found that in the Pareto environment, subjects' BIC scores were on
340 average significantly lower, indicating a better model fit, for the DN model than for the power utility model
341 (Fig 4A, one-sided Wilcoxon sign-rank test, $Z=4.4603$, $p<0.0001$). This was true for 48 subjects (out of 76).
342 In the uniform environment, we, again, found that the BIC scores were on average significantly lower for
343 the DN model (Fig 3D, one-sided Wilcoxon sign-rank test, $Z=2.9692$, $p=0.0015$) and this held for 42 (out of
344 76) subjects. Among the subjects who had a lower BIC score for the DN model in one of the environments
345 (41 in uniform, 48 in Pareto), 31 subjects, i.e., roughly three-quarters of each group of subjects, exhibited
346 consistent preference for the DN model across the two environments. Fewer subjects (17) had consistently
347 lower BIC scores for the power utility model in both environments.

348 Moreover, for only four subjects, the curvature parameter in the power utility model was estimated as
349 linear or as almost linear ($r_i = 1 \pm 0.05$). The mean and median r estimates were 0.608 and 0.366,
350 respectively. Importantly, the asymmetrical distributions of the differences in BIC scores (see insets in Fig
351 4A-B) indicate that while both models do (almost) equally well for most subjects, there is a group of subjects
352 for whom the DN model predicts their choices much better ($\Delta\text{BIC}>20$ for 29 subjects in Pareto and 18
353 subjects in uniform).

354 For a further comparison, we also recovered the pooled (aggregate) model parameters. S5 Table
355 presents the recovered pooled estimates from this analysis. Note that this analysis could only be done in
356 monetary space, so as to allow comparability of lotteries across subjects, and to recover meaningful
357 estimates of the M parameter in the DN model. Here, too, we find that the DN model captured subjects'
358 choices better, evidenced by the lower BIC scores under aggregation of choices from both treatments
359 (leftmost column), as well as within each environment (second and third columns). These results should be
360 interpreted cautiously, since the reward distributions were not fully controlled in the monetary space (S1
361 Fig).

362 Next, we directly examined whether the DN model fully contextualizes information about the
363 environment. We re-estimated subjects' choices using the DN specification in Eq. (i), setting M equal to the
364 true median of the subjective valuations encountered within each statistical environment (see Materials and
365 Methods). At the aggregate level, the DN model with fixed M provided a better fit than the power utility
366 model, as indicated by a lower BIC (S5 Table, column 1). When analyzed by environment, this advantage

367 persisted in the uniform case but not in the Pareto case (S5 Table, columns 2–3). Subject-level analyses
368 mirrored this pattern (S5 Fig): In the uniform environment, BIC scores were significantly lower for the DN
369 model (one-sided paired t -test, $t(75) = 1.735, p = 0.0434$), whereas in the Pareto environment, the two
370 models performed comparably ($t(75) = 0.975, p = 0.1663$). This analysis is, nevertheless, less suited to
371 testing our main hypothesis because fixing M does not allow for partial adaptation. The model's relative
372 success in the uniform environment underscores the value of DN-like contextual choice models compared
373 with non-contextual models.

374 Another way to examine the effect of the distributional environment on subjects' value-encoding – and
375 to validate our task design – is to assess the relationship between subjects' subjective valuation estimates
376 from STAGE I (ρ , see Fig 2E) and the STAGE II parameters: α in the DN model, and r in the power utility
377 model. The estimated parameters in STAGE II are multiplicative combinations of the STAGE I parameters.
378 Therefore, if participants were not adjusting to the environment, we would simply find that in STAGE II, and
379 independent of the environment, a power utility model with the exponent equal to one (i.e. $r_i = 1$) would fit
380 the data best. Figs 4C–4F suggest that this is not the case, further indicating that the environments
381 influenced subjects' value encoding – specifically through capturing the residual curvature attributable to
382 changes in the statistical environment. We also note that the two sets of parameters were fit on different
383 datasets: ρ_i was recovered from STAGE I data, whereas α_i and r_i were recovered from STAGE II data,
384 thereby highlighting that the STAGE II parameters can be attributed to environmentally induced effects.

385 Given the nature of our design, a hyperbolic relationship between STAGE I ρ and the STAGE II
386 parameters (i.e., the function $y = 1/x$) would imply that STAGE I curvature is undone in STAGE II in both
387 models. In the power utility model, this would also imply linear encoding of monetary payoffs (because
388 $(x^\rho)^{1/\rho}=x$). In contrast, in DN, it would mean that all curvature in STAGE II is associated with the DN
389 encoding.

390 Fig 4C–F plots STAGE II parameters against STAGE I ρ , highlighting two key findings: (a) the scatter
391 of points away from the hyperbolic function ($y = 1/x$) indicates that there remains a residual curvature
392 attributable to the statistical environments, and (b) in both the Pareto and uniform environments, the
393 relationship between ρ and the DN parameter (Figs 4C and 4E) is considerably closer to hyperbolic than
394 that between ρ and the power utility r parameter (Figs 4D and 4F). This suggests that, although the

395 environments further modified the curvature of the encoding function, the DN function better captured
396 STAGE II's subjective value functions. To quantify this effect, we compared the root-mean-squared errors
397 (RMSE) between the hyperbolic function and the parameters in both models and confirmed that across the
398 two environments, the α parameter of the DN model was more likely to exhibit this hyperbolic relationship
399 (α : Pareto: RMSE=0.6491, uniform: RMSE=0.6585; r : Pareto: RMSE=0.8109, uniform: RMSE=0.8588).

400 Taken together, all these results strengthen the notion that subjects used DN-like encoding of value in
401 both environments.

402

403 **Table 2. Median estimates.**

Parameter	Power utility model			DN model			
	r	θ_p	BIC	α	M	θ_{DN}	BIC
Uniform	0.379	0.054	121.120	1.299	23.216	0.0233	104.670
Pareto	0.528	0.103	184.761	1.358	18.875	0.026	154.482

404

405

406 *[Insert Fig 4 here]*

407

408 **Fig 4. Model-fitting.** (A-B) Each dot is one subject's DN model BIC score (y-axis) plotted against the same
409 subject's power utility BIC score (x-axis). A dashed 45-degree line indicates when both models are equally
410 successful. Inset shows the difference in BIC scores ($BIC_{power} - BIC_{DN}$). (A) The Pareto environment. (B)
411 The uniform environment. (C-D) Relationship between the STAGE I curvature of the subjective value
412 function (ρ) and STAGE II subjective value functions in the Pareto environment. The dashed curve indicates
413 a hyperbolic function $y = 1/x$. (C) DN model (α parameter). (D) Power utility model (r parameter). (E-F).
414 Same as (C-D), but for the uniform environment. Dots indicate individual subjects, + indicate the sample
415 averages. N=76.

416 **Context-dependency: adaptation of the encoding function to**
417 **the choice environment**

418 Our next aim was to examine whether subjects calibrated their encoding functions according to the
419 properties of the two different environments. We found that, for all subjects in our sample, the medians of
420 the subjective valuations in the uniform environment were higher than in the Pareto environment (sample
421 medians: 18.721 vs. 14.723 util units, respectively, $\Delta= 3.998$, one-sided Wilcoxon sign-rank test between
422 subject-specific medians, $Z=7.572$, $p<0.0001$). The reward expectation M in the DN model tracks the
423 median of the reward distribution, and hence, we hypothesized it would be higher in the uniform
424 environment. Consistent with this hypothesis, the sample median of the recovered M parameters in the
425 uniform case was higher by 4.99 (in utility units) than in the Pareto case (Table 2, also corroborated by a
426 one-sided Wilcoxon sign-rank test, $Z=2.8907$, $p=0.0019$). This difference between the recovered M
427 parameters was very close to the actual difference between the distributions' medians, indicating that
428 subjects, at least at the sample-level, quite precisely calibrated their encoding to the difference in reward
429 expectation. On the subject level, we found that for 44 out of 76 subjects estimated M was higher in the
430 uniform environment (Fig 5A).

431 We also examined how the change in recovered M across environments related to the true
432 difference in median payoffs. To make these parameters comparable, we expressed M in dollar units
433 (i.e., $\tilde{M}_i = M_i^{\frac{1}{\rho_i}}$). Perhaps counterintuitively, we found a negative correlation between the two measures
434 ($r = -0.279$, $p = 0.015$; S4 Fig), indicating that larger differences in true payoffs across environments were
435 estimated as smaller differences in M . However, this negative correlation arises mechanically from the
436 relationship between median payoffs and subjects' risk preferences (the ρ parameter). This result is further
437 supported by the positive correlation between ρ and $\Delta\tilde{M}_i$ ($r = 0.311$, $p = 0.006$; S4 Fig).

438 Our pooled estimation supports this conclusion with higher estimates of M in the uniform
439 environment ($M(uniform) = 66.653$ and $M(Pareto) = 55.561$, second and third columns in S4 Table,
440 $p<0.001$). As a robustness check, we estimated the DN model using the full dataset with the data from both
441 environments and included an additive dummy variable for the Pareto environment in the estimation of the

442 M parameter ($M = \text{constant} + M_{\text{pareto}} \times \text{Pareto}$). The output of this model split M into a constant,
443 corresponding to the estimate of M for the uniform environment, and an additional coefficient M_{pareto} that
444 captured the difference in M in the Pareto relative to the uniform environment. We found M_{pareto} to be
445 negative and significant ($p < 0.001$), indicating M was lower in the Pareto environment.

446 As an additional test of subjects' adaptation to the two statistical environments, we examined the
447 stability of the M parameter. Firstly, we tested whether the statistical structure in the uniform environment
448 may have been less informative for choosers employing the DN model. As a result, the recovered M values
449 would be noisier than in the Pareto environment. To allow interpretability of M across subjects, we focused
450 on the pooled estimates in dollar space. Indeed, we found that the standard error of M estimate was
451 substantially larger in the uniform vs. the Pareto environment (15.31 vs. 9.01, S5 Table), suggesting that
452 subjects had greater difficulty calibrating the M parameter to the uniform environment.

453 Secondly, we tested whether a longer exposure to a given statistical environment led to more
454 precise estimates of M . For each environment, we estimated M for early trials (#1-160) and late trials (#161-
455 320), separately in each session (S6 Table). We found that in the Pareto environment, the
456 recovered M values did not change significantly (54.6 in early trials vs. 56.5 in late trials). By contrast, in
457 the uniform environment, we observed substantial within-session variability, and the
458 recovered M decreased from 75.2 in early trials to 59.5 in later ones. Notably, the latter estimate is closer
459 to that of the Pareto environment, though still somewhat higher, reflecting the relative differences in the
460 environments' actual medians. These two results provide additional evidence that subjects calibrated to the
461 statistical structure of both environments.

462 In contrast to the M parameter, we had no prior hypotheses regarding the model's curvature
463 parameter α . Nevertheless, comparing subject-specific estimates, we found that, on average, the α
464 parameter was higher by 0.1593 in the Pareto environment (one-sided Wilcoxon sign-rank test, $Z = 1.9987$,
465 $p = 0.0228$, Fig 5B). This result may indicate that higher α values in the Pareto environment allowed better
466 discriminability between the more frequently encountered lottery options, as also indicated by our model-
467 free analysis (Table 1). However, this result was not fully replicated in the pooled estimates. When
468 estimating each environment separately, we found that recovered parameters were almost identical
469 ($\alpha_{\text{uniform}} = 0.93$, $\alpha_{\text{Pareto}} = 0.92$, S4 Table, second and third columns). A full model with random effect for

470 the Pareto environment (similarly to the one run on M) revealed that there was a tuning of the function
471 curvature when switching between environments (S4 Table, rightmost column, $p<0.001$).

472 The power utility model is not designed to capture the dependence of the subjective value function
473 on the distribution of valuations and hence, we did not anticipate an adaptation of the function's curvature.
474 Indeed, when comparing estimates of r across the two environments, we obtain inconclusive results. While
475 the pooled estimates indicated higher r values in the Pareto environment (S4 Table), the subject-level
476 estimates pointed in the opposite direction (Fig 5C, one-sided Wilcoxon sign-rank test between subject-
477 level estimates of r , $Z=0.051$, $p=0.480$).

478 To conclude, we found that subjects adapted the parameters of the DN encoding function to the
479 two environments in line with our hypothesis, showing context dependency in choice.

480

481 *[Insert Fig 5 here]*

482

483 **Fig 5. Cross-environment adaptation.** (A-B) Adaptation of the encoding function in the DN model. (A)
484 Best-fitting M parameter in the uniform (x-axis) vs. the Pareto (y-axis) environments. Estimates of M 's are
485 in utility space. Left inset: outliers. Right (diagonal) inset: Difference in the estimates of M across choice
486 environments ($M_{uniform} - M_{Pareto}$). Insets do not show three additional (risk-seeking) subjects whose M 's
487 are >400 (in util units). Dots indicate individual subjects, + indicate sample average without the inset
488 outliers, $N=76$. (B) same as (A) for the DN's α parameter. (C) Adaptation of the encoding function in the
489 power utility model. Same as (B), but for the r parameter from the power utility model. (B-C) Dots indicate
490 individual subjects, + indicate sample average, $N=76$.

491

492 **Discussion**

493 In this study, we tested how the distributional properties of choice environments affect value encoding. In
494 particular, we were interested in whether the subjective value of rewards is encoded via a mechanism such
495 as divisive normalization (DN) exclusively in the Pareto environments akin to those for which it is probably
496 efficient [28], or whether a DN representation is also employed in environments characterized by different
497 reward distributions. To this end, we designed an experiment in which subjects were asked to make choices
498 in two distinct statistical environments. In one environment, rewards were drawn from a Pareto distribution
499 of valuations, while in the other environment, valuations were uniformly distributed.

500 Our results indicate that subjects in our study were better described as using a DN mechanism
501 than a power utility mechanism to encode the subjective value of rewards, regardless of which of our two
502 distributions the rewards were drawn from. As expected, the key parameter of the model tracked the median
503 of the distribution. A model-free analysis indicated that, as compared with the uniform environment, subjects
504 in the Pareto environment made fewer mistakes when choice sets were drawn from the center of the
505 distribution at the expense of the margins, in accordance with a principal property of the DN function. We
506 then fitted our subjects' choices with two RUMs – a RUM with a DN-like utility function and the other a
507 standard RUM with a power utility function. Our subject-level and pooled model-fitting results suggested
508 that the DN model better captured subjects' choice patterns in both the Pareto and the uniform
509 environments (Table 2, Fig 5C-D and S5 Table). In line with the actual statistical properties of the two
510 environments, subjects had higher reward expectations in the uniform environment. Taken together, these
511 findings suggest that subjects' choices were affected by the context of the choice environment, and that
512 their choices were better described by DN-like divisive encoders than a more standard power utility model
513 (Fig 6).

514

515 *[Insert Fig 6 here]*

516

517 **Fig 6. Summary of main findings.**

518

519 One reason to see DN encoding, even across environments, is that Pareto distributions are very
520 common in the real world, and the human brain has evolved a mechanism that accords well with natural
521 environments. Indeed, numerous sensory stimuli are characterized by Pareto-like statistical properties
522 [1,14,18,29]. On a larger scale, Pareto distributions also describe various ecological quantities, such as
523 temporal and spatial measures of biodiversity [48–51]. More relevant to value-based decisions is that
524 certain economic and financial variables in modern societies [52,53], including consumption of several
525 categories of consumer goods [54], have Pareto-like properties.

526 Another important finding is that, compared with the standard utility functions used in economics,
527 DN provides the brain with a rather flexible tool for the representation of choice options [34,44]. Given the
528 specific parameterization we employed for DN, our model embeds the standard concave utility function, but
529 is also suitable for capturing preferences that follow *S-shaped* functions, similar to the one suggested by
530 Prospect Theory [55] with expectations-based reference dependence [56]: The M parameter in the DN
531 model tracks the median of rewards (*expectations*), which allows for scale-invariant adjustments to different
532 environments, while ensuring a fine discrimination between stimuli that are in the center of the distribution
533 [2,9,13,57]. These adjustments – also evident in our data – give rise to spatial and temporal context effects
534 in choice processes [25,44,58–62], and are also the core reason for some notable perceptual illusions
535 [63,64].

536 Our findings also imply that some choice patterns should not be regarded as built-in decision
537 biases, errors, or mistakes. Rather, they reflect adjustments of the brain, as a constrained system, to its
538 environment, thus reflecting a rational value-encoding mechanism [2,13]. Such an observation can explain
539 the under-sampling of rare events when subjects adjust to new choice environments [65,66] since the main
540 focus of the system is on the mass of occurrences.

541 Our primary aim in the current study was to assess whether the encoding function was sensitive to
542 the distributional structure of the environment. Future work could vary both distributional shapes and their
543 means (in a factorial design) for a targeted test of adaptation to study which environmental statistic underlies
544 normalized encoding. Another interesting question that stems directly from our research is to what extent
545 our results generalize beyond decision-making processes to other cognitive functions, such as sensory
546 processing. Even though various natural sensory stimuli are described by Pareto-like properties [14,18,57],

547 we also frequently encounter, and are required to process, non-natural non-Pareto stimuli [67,68]. Our
548 findings, therefore, invite further investigation into the effects of DN encoding on the sensory processing of
549 non-Pareto stimuli.

550

551 **Materials and methods**

552 Some of the data in this manuscript have been used in the conference paper in reference [46].

553

554 **Experimental design**

555 **Valuation task (STAGE I)**

556 Our goal was to establish whether the brain employs different value encoding models in environments with
557 different reward distributions. To eliminate any additional prior heterogeneity in subjects' subjective
558 valuations of money, we generated distributions of rewards in the subjective value (SV) space instead in
559 dollar amounts (or expected values). To map the subject-specific SV space, we first recovered individual-
560 specific subjective value functions over dollar amounts. To do this, in STAGE I, we used a valuation task,
561 in which subjects reported their willingness to pay to participate in a lottery. See S1 Table for the list of 33
562 lotteries used in this task. On each trial, subjects were presented with a visualization of a 50-50 lottery on
563 the computer screen and had to type in their willingness to pay to participate in it as a dollar amount (Fig
564 2A). For each lottery, the valuation could range between the current lottery's minimal and maximal payoff,
565 in \$0.10 increments. All subjects completed the same 33 trials in an order randomized at the subject level.
566 At the end of the session, the realization of one randomly selected trial was implemented for payment, using
567 a Becker–DeGroot–Marschak (BDM) [69] procedure which was designed to elicit truthful valuations.

568

569 *Choice task (STAGE II).* STAGE II was designed to test whether the distribution of rewards (lotteries with
570 different subjective valuations) in a choice environment affects what value encoding model subjects use.
571 Subjects were asked to choose the 50-50 lottery they preferred from two available options that varied from
572 trial to trial. Lottery payoffs ranged between \$0 and \$60 in \$0.10 increments. Overall, subjects made 640
573 binary choices that were divided into two blocks of 320 trials each and presented on subsequent days. Our
574 experimental manipulation was that in each block, the valuations were drawn either from a Pareto Type III
575 distribution or from a uniform distribution (Fig 2A-B). The order in which subjects experienced these
576 environments was counter-balanced across subjects. One trial was randomly selected for payment at the

577 end of each experimental session. Subjects also completed additional 640 trials with six-option choice sets
578 with lottery valuations drawn either from a Pareto Type III or uniform distributions. Thus, in total, in each
579 environment subjects encountered two 320 choice blocks. The six-option blocks were designed to examine
580 another research question that is beyond the scope of the current study and will be reported in a separate
581 paper. Blocks were presented in an order randomized across subjects but on a given day, all blocks were
582 drawn from the same distribution. Payments for STAGE II included a realization of one choice from each
583 of the two sessions, and could be drawn either from the two-options sets or from the six-options sets.

584

585 *Subjective Value of Money.* We used each subject's STAGE I single lottery valuations to estimate their
586 subjective value function over money. We expressed each subject i 's subjective value of a 50-50 lottery
587 that paid y_1 or y_2 each equally likely, using an expected power utility function as:

588 (iii) $E[u_i(y)] = 0.5y_1^{\rho_i} + 0.5y_2^{\rho_i}$

589 If the curvature parameter $\rho_i < 1$, then subject i is risk-averse. When $\rho_i = 1$, the subject is risk-neutral. If
590 $\rho_i > 1$, the subject is risk-seeking. Therefore, the certainty equivalents (c) that participants stated were
591 converted to subjective values using the same power utility function such that $c = E[u_i(y)]^{1/\rho}$. We ran an
592 NLS regression to estimate the ρ parameter separately for each subject.

593

594 We used the subject's' estimated ρ_i , to pick different combinations of lottery dollar payoffs to create
595 lotteries that had a specific SV to that individual. This enabled us to generate sets of lotteries whose implied
596 SV distributions matched our target distributions (see below), regardless of individual differences in the
597 curvature of the subjective value function.

598

599 **Distributions of valuations**

600 **Uniform Distributions of SVs.** For each subject i , we computed the upper bound of the distribution as the
601 SV of the maximal possible monetary payoff in the study, which was \$60 (i.e., $u_i^{max} = 60^{\rho_i}$). We then divided
602 the range $[0, u_i^{max}]$ into 40 equally-spaced SV increments. For each of the increments, we created eight

603 different lotteries, which would give the subject the subjective value in exactly this bracket (for a total of 320
 604 lotteries). Since the joint distribution of a two-dimensional uniform distribution is independent, and hence
 605 determined by its marginals, we then picked pairs of lotteries from this set for generating binary choice sets.
 606

607 **Pareto Type III Distributions of SVs.** In the Pareto treatment, subjective lottery valuations are drawn from
 608 a bivariate Pareto distribution with a joint pdf $f_{u_i}(u_{i,1}, u_{i,2})$ given, for every subject i and $k \in \{1,2\}$
 609 enumerating the choice option within the choice set (see Eq. 7 in reference [28], with $\mu_1=0$ to match the
 610 lower bound of the uniform distribution and to avoid negative valuations), by

$$611 \quad (iv) \quad f_{u_i}(u_{i,1}, u_{i,2}) = \beta^2 \frac{2 \left(\prod_{k=1}^2 \frac{1}{\sigma_{i,k}} \left(\frac{u_{i,k}}{\sigma_{i,k}} \right)^{\beta-1} \right)}{\left(1 + \sum_{k=1}^2 \left(\frac{u_{i,k}}{\sigma_{i,k}} \right)^{\beta} \right)^3}.$$

612 Its marginals are log-logistic (or Fisk) distributions, with pdf

$$613 \quad (v) \quad f_{u_{i,k}}(u_{i,k}) = \beta \frac{\frac{1}{\sigma_{i,k}} \left(\frac{u_{i,k}}{\sigma_{i,k}} \right)^{\beta-1}}{\left(1 + \left(\frac{u_{i,k}}{\sigma_{i,k}} \right)^{\beta} \right)^2}.$$

614 We matched, for each subject, the conditional mean to the expectation of the uniform distribution, which
 615 was \$30 (and $\bar{u}_i = 30^{\rho_i}$ in SV-space); the conditional mean is given, for $\beta > 1/2$, by

$$616 \quad (vi) \quad E(u_{i,k} | u_{i,l}) = \sigma_{i,k} \left[1 + \left(\frac{u_{i,l}}{\sigma_{i,l}} \right)^{\beta} \right]^{1/\beta} \frac{\Gamma(2 - \frac{1}{\beta}) \Gamma(\frac{\beta+1}{\beta})}{\Gamma(2)}, \forall k \neq l$$

617 where Γ denotes the Gamma function. We set $\beta = 3$, and solve for σ_i .

618 Following Proposition 4 in [28] and using the subject-specific parameterization, we generated the
 619 random variables following Pareto Type III distributions as

$$620 \quad (vii) \quad u_{i,k} = \sigma_{i,k} \left(\frac{Y_{i,k}}{Z_i} \right)^{\frac{1}{\beta}}, \quad \text{for } k \in \{1,2\}$$

621 where $Y_{i,k} \sim \text{Exp}(\lambda = 1)$ and $Z_i \sim \text{Exp}(\lambda = 1)$ independently of all $Y_{i,k}$. Fig 2C presents three examples for
622 such distributions with different values for ρ_i .

623 Note that using only 320 draws may lead to under-sampling of the distributions. Therefore, to fully
624 capture the shape of the distribution, for each subject, we first generated joint Pareto distributions with 100K
625 draws. We then created small 600-draw experimental distributions that matched the large 100k-draw
626 distributions, allowing a deviation of up to 0.2 utils from the actual first and second moments (mean and
627 standard deviation) of the large 100k-draws sets. Fig 2D compares matched and unmatched small sets,
628 corresponding to the large 100k-draws set presented in Fig 2C (middle panel). Finally, we truncated the
629 long tail of the Pareto Type III distributions at $u_i^{\max} = 60^{\rho_i}$ (eliminating 6.5 to 23.83 percent of the
630 distribution, depending on the ρ parameter, the curvature of the subjective value function), to match the
631 upper bound of the uniform distribution and to avoid extreme reward amounts. We then sampled 320 SVs
632 at random from the remaining valuations, which constituted the experimental subject-specific Pareto
633 distributions.

634

635 **Generating Binary Choice Sets from the Distributions of Valuations.** The final step was to generate
636 lottery dollar amounts from the SV distributions. For each lottery k with a valuation u_k , we first randomly
637 drew the first monetary payoff $x_{1,k}$ from a range of possible payoffs $\$0-x^{\max}$ in $\$0.10$ increments. We had to
638 restrict the maximum value of $x_{1,k}$ to make sure that including it in the lottery, does not exceed the lottery
639 valuation (u_k), and thus to avoid negative values for the second lottery payoff. We determined the maximal
640 value of the first payoff $x_{1,k}$ using the minimum function:

641 (viii) $x_{1,k}^{\max} = \min \{(2u_k)^{\frac{1}{\rho}}, 60\}.$

642 We then solved for $x_{2,k}$ giving rise to the desired u_k , rounded to one decimal place, using the following
643 equation:

644 (ix) $x_{2,k} = (2u_k - (x_{1,k})^{\rho})^{\frac{1}{\rho}}.$

645 S1 Fig shows how the heterogeneity in ρ values affected the distributions of $x_{1,k}$ and $x_{2,k}$.

646
647 We restricted the share of trials with first-order stochastic dominance (F OSD) (trials on which both
648 lottery payoffs of one lottery were higher or equal to the other lottery's payoffs) to 45 percent. For subjects
649 with $\rho_i \rightarrow 0$, we could not generate experimental sets with only 45 percent of the trials. Thus, we fixed
650 $\rho_i = 1$, for all subjects with $\rho_i < 0$, (a total of 4 subjects, see S2 Table), limiting the interoperability of data
651 from this small number of subjects. In contrast, for two subjects with very high ρ 's ($\rho_i > 4$), we also had to
652 fix $\rho_i = 1$ in STAGE II of the study, since a very large tail from their Pareto distribution of SVs exceeded
653 \$60. Respectively, the interoperability of data from these subjects is also limited. Nonetheless, we wanted
654 to avoid any unjustified elimination of data, and therefore analyzed data from these six subjects. Importantly,
655 our main qualitative findings do not change once we remove these subjects from our sample.

656
657 **Procedures**

658 **Sessions**
659 Experimental sessions were carried out online via Zoom while subjects completed the task on a website.
660 Data collection took place between autumn 2021 and summer 2022. After instruction, subjects had to
661 successfully answer a set of comprehension questions about the procedure before starting STAGE I. They
662 could participate in STAGE II of the study only if they completed all trials in STAGE I. Subjects received all
663 payments after completing both STAGE I and STAGE II. Subjects received a \$10 participation fee and on
664 average \$24.5 in STAGE I (range \$0-60) and \$76.02 in STAGE II (range \$7.3-120) from the decision task.
665 All amounts are in Australian dollars. All parts of the experiment were self-paced. Both the valuation and
666 the choice tasks were programmed in the oTree software package [70].

667
668 **Ethics statements**
669 The study was approved by the local ethics committee at the University of Sydney. All subjects gave
670 informed written consent before participating in the study.

671

672 **Participants**

673 We recruited participants from various departments at the University of Sydney. Seventy-six subjects (44
674 females, mean age=21.8, std: 3.34, range: 18-30) passed the comprehension questions and completed
675 STAGE I and the two choice tasks of STAGE II.

676

677 **Model Fitting**

678 **Sample-level (pooled) estimates.** We estimated subjects' aggregated choice data via a probit choice
679 function with maximum likelihood estimation (MLE). Standard errors were clustered at the subject level.
680 Thus, in the pooled estimation subjects were treated as one representative decision-maker. In this analysis,
681 we used lotteries' monetary rewards (as opposed to their subjective valuations) to allow meaningful
682 estimates of DN's M parameter, and to confine the range of lottery payoffs. For both DN and power utility
683 models, we report the results from models estimated on the full dataset and separately on each choice
684 environment. To test the possibility of adaptation of the encoding function to the choice environments, we
685 further report the results from three additional models estimated on the full dataset, which also included a
686 dummy variable indicating the Pareto environment for the reward expectation, M parameter (DN) as
687 $M = \text{constant} + M_{\text{Pareto}} \times \text{Pareto}$ and similarly for the functions' curvature parameters α (DN) and r
688 (power utility), respectively.

689

690 **Subject-level estimates.** DN. In each choice environment, we recovered subject-specific estimates of the
691 free parameters, restricting the search space as follows: $\alpha \in [0, 1.5]$, $M \in [0, u_i^{\max}]$ and $\theta > 0$ (see equation (i)
692 in the text). We employed MLE using the Nelder-Mead algorithm with a max-iteration limit of 1,000 and a
693 stopping criterion of 0.5 tolerance. We initialized M to the distributions' medians. θ was initialized at 0.03,
694 matching the sample-level pooled estimate (see S5 Table), and the α parameter was initialized at 1. For
695 calculating the likelihoods, in each of the 320 trials, we generated 10,000 samples with randomly drawn
696 Gaussian noise. The log-likelihood function was thus given by –

697

698 (x) $\log L(\alpha_i, M_i, \theta_i | u_{i,t}) = y_{i,t} \log(\Pr(y_{i,t} = 1 | u_{i,t})) + (1 - y_{i,t}) \log(\Pr(y_{i,t} = 0 | u_{i,t}))$,

699 Where $y_{i,t} = \{0,1\}$ indicates the subject's i choice in trial $t = \{1, \dots, 320\}$.

700

701 *Power utility.* We fitted the power utility model to recover subject-specific estimates of the r and θ
702 parameters using a similar procedure. We restricted the search space as follows: $r \in \{0, 1.5\}$, and $\theta > 0$ (see
703 equation (ii) in the text). θ was initialized at 0.03, matching the sample-level pooled estimate (see S5 Table).
704 For the r parameter, we took ten random initializations in the range $\{0, 1.5\}$ with a precision of 5. All other
705 procedures were identical to the DN model.

706

707 **Acknowledgements**

708 The authors thank the attendees of the Departmental Seminar at the Neuroscience Institute at NYU, the
709 Annual Meeting of the Society for Neuroscience, and the Annual Meeting of the Society for Cognitive
710 Science for their valuable input and discussions on the paper.

711

712 **Funding Statement**

713 This work was funded by the Australian Research Council (Grant No. DP190100489 to AT and PG). A.B.
714 acknowledges financial support from NYU Stern School of Business, NYU Shanghai, and J.P. Valles.

715

716 **Authors Contributions**

717 V.K.D., V.A., S.B., A.B., K.L., P.G. and A.T. designed the study. V.A. collected the data. V.K.D, S.S. and
718 V.A. analyzed the data. V.K.D., P.G. and A.T. wrote the manuscript.

719 **Data Availability**

720 All data needed to evaluate the conclusions in the paper are present in the paper and/or the Supplementary
721 Materials. All data and code used in the paper are available on figshare at 10.6084/m9.figshare.c.8183615.

722

723 **Competing Interests**

724 The authors declare that they have no competing interests.

725 **References**

726 1. Simoncelli EP, Olshausen BA. Natural Image Statistics and Neural Representation. *Annu. Rev.*
727 *Neurosci.* 2001;24:1193–216.

728 2. Glimcher PW. Efficiently irrational: deciphering the riddle of human choice. *Trends in Cognitive*
729 *Sciences* 2022;26:669–87.

730 3. Frydman C, Jin LJ. Efficient Coding and Risky Choice. *The Quarterly Journal of Economics*
731 2022;137:161–213.

732 4. Stewart N, Reimers S, Harris AJL. On the Origin of Utility, Weighting, and Discounting Functions:
733 How They Get Their Shapes and How to Change Their Shapes. *Management Science*
734 2015;61:687–705.

735 5. Alempaki D, Canic E, Mullett TL, Skylark WJ, Starmer C, Stewart N, et al. Reexamining How Utility
736 and Weighting Functions Get Their Shapes: A Quasi-Adversarial Collaboration Providing a New
737 Interpretation. *Management Science* 2019;65:4841–62.

738 6. Tymula A, Plassmann H. Context-dependency in valuation. *Current Opinion in Neurobiology*
739 2016;40:59–65.

740 7. Khaw MW, Glimcher PW, Louie K. Normalized value coding explains dynamic adaptation in the
741 human valuation process. *Proceedings of the National Academy of Sciences* 2017;114:12696–701.

742 8. Heng JA, Woodford M, Polania R. Efficient sampling and noisy decisions. *eLife* 2020;9:e54962.

743 9. Louie K, Glimcher PW. Efficient coding and the neural representation of value. *Annals of the New*
744 *York Academy of Sciences* 2012;1251:13–32.

745 10. Polanía R, Woodford M, Ruff CC. Efficient coding of subjective value. *Nat Neurosci* 2019;22:134–42.

746 11. Khaw MW, Li Z, Woodford M. Cognitive Imprecision and Small-Stakes Risk Aversion. *The Review of*
747 *Economic Studies* 2021;88:1979–2013.

748 12. Rustichini A, Conen KE, Cai X, Padoa-Schioppa C. Optimal coding and neuronal adaptation in
749 economic decisions. *Nat Commun* 2017;8:1208.

750 13. Stevenson K, Brandenburger A, Glimcher P. Choice-theoretic foundations of the divisive
751 normalization model. *Journal of Economic Behavior & Organization* 2019;164:148–65.

752 14. Schwartz O, Simoncelli EP. Natural signal statistics and sensory gain control. *Nat Neurosci*
753 2001;4:819–25.

754 15. Carandini M, Heeger DJ. Normalization as a canonical neural computation. *Nat Rev Neurosci*
755 2012;13:51–62.

756 16. Olsen SR, Bhandawat V, Wilson RI. Divisive Normalization in Olfactory Population Codes. *Neuron*
757 2010;66:287–99.

758 17. Heeger DJ. Normalization of cell responses in cat striate cortex. *Visual Neuroscience* 1992;9:181–97.

759 18. Schwartz O, Simoncelli E. Natural Sound Statistics and Divisive Normalization in the Auditory System
760 [Internet]. In: *Advances in Neural Information Processing Systems*. MIT Press; 2000 [cited 2023 Feb

761 1]. Available from:
762 <https://proceedings.neurips.cc/paper/2000/hash/96c5c28becf18e71190460a9955aa4d8-Abstract.html>

764 19. Carandini M, Heeger DJ, Movshon JA. Linearity and Normalization in Simple Cells of the Macaque Primary Visual Cortex. *J. Neurosci.* 1997;17:8621–44.

766 20. Kaliukhovich DA, Vogels R. Divisive Normalization Predicts Adaptation-Induced Response Changes in Macaque Inferior Temporal Cortex. *J. Neurosci.* 2016;36:6116–28.

768 21. Kello CT, Brown GDA, Ferrer-i-Cancho R, Holden JG, Linkenkaer-Hansen K, Rhodes T, et al. 769 Scaling laws in cognitive sciences. *Trends in Cognitive Sciences* 2010;14:223–32.

770 22. Chater N, Brown GDA. Scale-invariance as a unifying psychological principle. *Cognition* 771 1999;69:B17–24.

772 23. Rangel A, Clithero JA. Value normalization in decision making: theory and evidence. *Current Opinion* 773 in Neurobiology 2012;22:970–81.

774 24. Louie K, Grattan LE, Glimcher PW. Reward Value-Based Gain Control: Divisive Normalization in 775 Parietal Cortex. *J. Neurosci.* 2011;31:10627–39.

776 25. Louie K, Khaw MW, Glimcher PW. Normalization is a general neural mechanism for context- 777 dependent decision making. *Proceedings of the National Academy of Sciences* 2013;110:6139–44.

778 26. Gluth S, Kern N, Kortmann M, Vitali CL. Value-based attention but not divisive normalization 779 influences decisions with multiple alternatives. *Nat Hum Behav* 2020;4:634–45.

780 27. Bavard S, Palminteri S. The functional form of value normalization in human reinforcement learning. 781 *eLife* 2023;12:e83891.

782 28. Bucher SF, Brandenburger AM. Divisive normalization is an efficient code for multivariate Pareto- 783 distributed environments. *Proc. Natl. Acad. Sci. U.S.A.* 2022;119:e2120581119.

784 29. Wainwright MJ, Schwartz O, Simoncelli EP. Natural Image Statistics and Divisive Normalization 785 [Internet]. In: Rao RPN, Olshausen BA, Lewicki MS, editors. *Probabilistic Models of the Brain*. The 786 MIT Press; 2002 [cited 2024 June 27]. page 203–22. Available from:
787 <https://direct.mit.edu/books/book/2733/chapter/73923/Natural-Image-Statistics-and-Divisive>

788 30. Solé RV, Levin SA, Brown JH, Gupta VK, Li BL, Milne BT, et al. The fractal nature of nature: power 789 laws, ecological complexity and biodiversity. *Philosophical Transactions of the Royal Society of* 790 *London. Series B: Biological Sciences* 2002;357:619–26.

791 31. Newman M. Power laws, Pareto distributions and Zipf's law. *Contemporary Physics* 2005;46:323–51.

792 32. Mcfadden D. Economic Choices. *The American Economic Review* 2001;91.

793 33. Jacob Marschak. Binary Choice Constraints on Random Utility Indicators. 1959;

794 34. Glimcher PW, Tymula AA. Expected subjective value theory (ESVT): A representation of decision 795 under risk and certainty. *Journal of Economic Behavior & Organization* 2023;207:110–28.

796 35. Barsky RB, Juster FT, Kimball MS, Shapiro MD. Preference Parameters and Behavioral 797 Heterogeneity: An Experimental Approach in the Health and Retirement Study*. *Q J Econ* 798 1997;112:537–79.

799 36. Choi S, Fisman R, Gale D, Kariv S. Consistency and Heterogeneity of Individual Behavior under
800 Uncertainty. *American Economic Review* 2007;97:1921–38.

801 37. Steffen Andersen, Glenn W. Harrison, Morten I. Lau, Elisabet Rutström. Eliciting Risk and Time
802 Preferences. *Econometrica* 2008;76:583–618.

803 38. Holt CA, Laury SK. Risk Aversion and Incentive Effects. *American Economic Review* 2002;92:1644–
804 55.

805 39. Luce RD, Krumhansl CL. Measurement, scaling, and psychophysics. In: Stevens' handbook of
806 experimental psychology: Perception and motivation; Learning and cognition, Vols. 1-2, 2nd ed.
807 Oxford, England: John Wiley & Sons; 1988. page 3–74.

808 40. Gourinchas PO, Parker JA. Consumption Over the Life Cycle. *Econometrica* 2002;70:47–89.

809 41. Bleichrodt H, Quiggin J. Life-cycle preferences over consumption and health: when is cost-
810 effectiveness analysis equivalent to cost–benefit analysis? *Journal of Health Economics*
811 1999;18:681–708.

812 42. Peter Wakker. Explaining the characteristics of the power (CRRA) utility family. *Health Economics*
813 2008;17:1329–44.

814 43. Rolls ET, Grabenhorst F, Deco G. Choice, difficulty, and confidence in the brain. *NeuroImage*
815 2010;53:694–706.

816 44. Webb R, Glimcher PW, Louie K. The Normalization of Consumer Valuations: Context-Dependent
817 Preferences from Neurobiological Constraints. *Management Science* 2021;67:93–125.

818 45. Schwartz O, Hsu A, Dayan P. Space and time in visual context. *Nat Rev Neurosci* 2007;8:522–35.

819 46. Kurtz-David V, Alladi V, Bucher S, Brandenburger A, Louie K, Glimcher P, et al. Choosers Adapt
820 Value Coding to the Environment, But Do Not Attain Efficiency [Internet]. In: Proceedings of the
821 Annual Meeting of the Cognitive Science Society. 2023 [cited 2024 Aug 14]. Available from:
822 <https://escholarship.org/uc/item/7cp9r5hc>

823 47. Kahneman D, Tversky A. Prospect Theory: An Analysis of Decision under Risk. *Econometrica*:
824 Journal of the Econometric Society 1979;47:263–91.

825 48. Sophia I. Passy. Power law relationships among hierarchical taxonomic categories in algae reveal a
826 new paradox of the plankton. *A Journal of Macroecology* 2006;15:528–35.

827 49. Enquist BJ. Universal scaling in tree and vascular plant allometry: toward a general quantitative
828 theory linking plant form and function from cells to ecosystems. *Tree Physiology* 2002;22:1045–64.

829 50. McGill BJ, Etienne RS, Gray JS, Alonso D, Anderson MJ, Benecha HK, et al. Species abundance
830 distributions: moving beyond single prediction theories to integration within an ecological framework.
831 *Ecology Letters* 2007;10:995–1015.

832 51. Mark Q. Wilber, Justin Kitzes, John Harte. Scale collapse and the emergence of the power law
833 species–area relationship. *A Journal of Macroecology* 2015;24:883–95.

834 52. Gabaix X. Power Laws in Economics and Finance. *Annual Review of Economics* 2009;1:255–94.

835 53. Gabaix X. Zipf's Law and the Growth of Cities. *American Economic Review* 1999;89:129–32.

836 54. Kim BJ, Singh V, Winer RS. The Pareto rule for frequently purchased packaged goods: an empirical
837 generalization. *Mark Lett* 2017;28:491–507.

838 55. Kahneman D, Tversky A. Prospect Theory: An Analysis of Decision Under Risk [Internet]. In:
839 *Handbook of the Fundamentals of Financial Decision Making*. WORLD SCIENTIFIC; 2012 [cited
840 2024 June 18]. page 99–127. Available from:
841 https://www.worldscientific.com/doi/abs/10.1142/9789814417358_0006

842 56. Botond Koszegi, Matthew Rabin. A model of reference-dependent preferences. *The Quarterly
843 Journal of Economics* 2006;121:1133–65.

844 57. Simoncelli EP, Olshausen BA. Natural Image Statistics and Neural Representation. *Annual Review of
845 Neuroscience* 2001;24:1193–216.

846 58. Trueblood JS, Brown SD, Heathcote A, Busemeyer JR. Not Just for Consumers: Context Effects Are
847 Fundamental to Decision Making. *Psychol Sci* 2013;24:901–8.

848 59. Tversky A, Simonson I. Context-Dependent Preferences. *Management Science* 1993;39:1179–89.

849 60. Shen B, Nguyen D, Wilson J, Glimcher PW, Louie K. Early versus late noise differentially enhances
850 or degrades context-dependent choice. *Nat Commun* 2025;16:3828.

851 61. Louie K, Glimcher PW, Webb R. Adaptive neural coding : from biological to behavioral. *Current
852 Opinion in Behavioral Sciences* 2015;5:91–9.

853 62. Khaw MW, Glimcher PW, Louie K. Normalized value coding explains dynamic adaptation in the
854 human valuation process. *Proceedings of the National Academy of Sciences* 2017;114:12696–701.

855 63. Reynolds JH, Heeger DJ. The Normalization Model of Attention. *Neuron* 2009;61:168–85.

856 64. Schwartz O, Coen-Cagli R. Visual attention and flexible normalization pools. *Journal of Vision*
857 2013;13:25.

858 65. Hertwig R, Barron G, Weber EU, Erev I. Decisions from Experience and the Effect of Rare Events in
859 Risky Choice. *Psychol Sci* 2004;15:534–9.

860 66. Hertwig R, Erev I. The description–experience gap in risky choice. *Trends in Cognitive Sciences*
861 2009;13:517–23.

862 67. Barranca VJ, Zhu XG. A computational study of the role of spatial receptive field structure in
863 processing natural and non-natural scenes. *Journal of Theoretical Biology* 2018;454:268–77.

864 68. Heurteloup C, Merchie A, Roux S, Bonnet-Brilhault F, Escera C, Gomot M. Neural repetition
865 suppression to vocal and non-vocal sounds. *Cortex* 2022;148:1–13.

866 69. Becker GM, DeGroot MH, Marschak J. Measuring utility by a single-response sequential method.
867 *Syst. Res.* 1964;9:226–32.

868 70. Chen DL, Schonger M, Wickens C. oTree—An open-source platform for laboratory, online, and field
869 experiments. *Journal of Behavioral and Experimental Finance* 2016;9:88–97.

870

871

872 **Supplementary Information**

873 **S1 Fig. Representative Sets in STAGE II.** Left – a risk averse subject, middle – a risk neutral subject,
874 right – a risk seeking subject. Top to bottom: (1) Distributions of the high winning amount in Lottery 1 (in
875 dollars); (2) Distributions of the low winning amount in lottery 1 (in dollars); (3) Distribution of the expected
876 earnings (EV) of Lottery 1 (in dollars); (4) Distributions of the valuations (u_1) of Lottery 1 (in util units); (5)
877 2-dimensional histogram of the valuations of Lottery 1 and Lottery 2 (u_1 and u_2 , in util units).

878 **S2 Fig. Descriptive statistics.** (A) violins show the share of trials in which subjects chose the lottery with
879 the higher subjective value. (B) violins show the number of FOSD violations per subject. Dots indicate
880 individual subjects. N=76. (C-D) Share of trials in which subjects chose the lottery with the higher SV, first
881 half of the session (trials 1-160), compared with the second half of the session (trials 161-320). Each gray
882 line indicates a subject. Colored lines are sample averages. (C) Pareto distribution sessions. (D) Uniform
883 distribution sessions.

884 **S3 Fig. Noise estimates.** Comparing the best-fitting σ parameter (decision noise) across the distributional
885 environments reveals noise levels were higher in the Pareto environment. *Left* - DN model (one-sided
886 Wilcoxon sign-rank test, $Z=2.2314$, $p=0.0257$). *Right* - Power Utility model (one-sided Wilcoxon sign-rank
887 test, $Z=2.9172$, $p=0.0035$). Scatters indicate individual subjects. N=76.

888 **S4 Fig. Distributions' medians.** (A-B) Distributions of median payoffs (in dollar amounts), (A) Pareto, (B)
889 uniform. (C) median of monetary payoffs across environments vs subjects' risk preferences, captured by
890 the ρ parameter from STAGE I. (D) change in the true median of monetary payoffs across environments vs
891 subjects' ρ parameter (scatters are equivalent to the grey lines in (C)). (E) Change in the true median payoff
892 across environments compared with the change in the recovered \tilde{M}_i parameter across the two
893 environments. (F) Subjects' risk (ρ parameter) compared with the change in the recovered \tilde{M}_i parameter
894 across the two environments. (D-F) Each scatter represents one subject. N=76.

895

896 **S5 Fig. Model-fitting, Power utility compared with a DN model where M is fixed.** *Top* - Each dot is one
897 subject's DN model BIC score (y-axis) plotted against the same subject's power utility BIC score (x-axis).

898 A dashed 45-degree line indicates when both models are equally successful. *Bottom* - the difference in BIC
899 scores ($BIC_{\text{power}} - BIC_{\text{DN}}$). Left panels show the uniform environment, and right shows the Pareto
900 environment.

901 **S1 Table. Lotteries used in STAGE I.**

902 **S2 Table. Individual-level estimates of risk preferences from subjects' bids in STAGE I.** (*) For these
903 subjects we could not generate distributions of valuations for STAGE II that would adhere to our
904 requirement to limit the number of trials with FOSD violations (when $\rho_i \rightarrow 0$), or without having to censor a
905 very large tail of the Pareto distribution (when $\rho_i > 4$). Instead, for these subjects we plugged-in $\rho_i = 1$ to
906 generate the distributions for STAGE II.

907 **S3 Table. Robustness checks for the findings presented in Column (2) in Table 1.** We vary the
908 definitions for *center of the distributions* (center) and *around the diagonal* (diagonal). Column (1)
909 corresponds to the regression presented in the Main Text.

910 **S4 Table. Individual-level best-fitting model parameters across environments (STAGE II).** (*) Subjects
911 who had either a STAGE I estimate of $\rho_i = 0$ or $\rho_i > 4$. For those subjects, we could not generate distributions
912 of valuations for STAGE II that would adhere to our requirement to limit the number of trials with FOSD
913 violations (when $\rho_i \rightarrow 0$), or without having to censor a very large tail of the Pareto distribution (when $\rho_i > 4$).
914 Instead, for these subjects we plugged-in $\rho_i = 1$ to generate the distributions for STAGE II.
915 (**) Subjects who had >20 FOSD violations in at least one of the treatments.

916 **S5 Table. Pooled estimates, dollar space.** The table shows recovered parameters for the DN model (top
917 rows), the DN model where M is fixed as the true median of the distributions (middle rows), and the Power
918 utility model (bottom rows). In practice, to allow a better identification of the model parameters, we estimated
919 the parameter τ , such that $\tau = M^\alpha$. We recovered M post-hoc by simply plugging-in τ and α into the equation.
920 Standard errors in parentheses, + $p < 0.1$, * $p < 0.05$, ** $p < 0.01$, *** $p < 0.001$.

921 **S6 Table. Behavioral dynamics of fitted parameters.** Pooled estimates in dollar space, early vs late trials
922 in each statistical environment. In practice, to allow a better identification of the model parameters, we

923 estimated the parameter τ , such that $\tau=M^\alpha$. We recovered M post-hoc by simply plugging-in τ and α into
924 the equation. Standard errors in parentheses, + p<0.1, * p<0.05, ** p<0.01, *** p<0.001.

925 **S7 Table. Model-free analysis, alternative model.** Same analysis as in Table 1, while controlling for
926 potential discontinuity in the model. MLE estimation with a Bernoulli model where the inverse link cannot
927 drop below the chance level (0.5), such that $p_i = 0.5 + 0.5 \Phi(x_i' \beta)$. Variables and specifications are identical
928 to Table 1. Standard errors clustered on subject in parentheses, + p<0.1, * p<0.05, ** p<0.01, *** p<0.001.