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Abstract  22 

The Divisive Normalization (DN) function has been described as a “canonical neural computation” in the 23 

brain that achieves efficient representations of sensory and choice stimuli. Recent work shows that it 24 

efficiently encodes a specific class of Pareto-distributed stimuli. Does the brain shift to different encoding 25 

functions or is there evidence for DN encoding in other types of environments? In this paper, using a within-26 

subject choice experiment, we show evidence of the latter. Subjects made decisions in two distinct choice 27 

environments with choice sets either drawn from a Pareto distribution or from a uniform distribution. Our 28 

results indicate that subjects’ choices are better described by a divisive coding strategy in both 29 

environments. Moreover, subjects appeared to calibrate a DN function to match, as closely as possible, the 30 

actual statistical properties of each environment. These results suggest that divisive representations of 31 

encoded stimuli may be inherent to the nervous system.  32 

 33 

 34 

35 
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Introduction 36 

We make some decisions more often than others – in dozens of instances during our life, we choose 37 

between having two regular dishes for dinner, but rarely have to indicate which of two acclaimed restaurants 38 

we prefer. An often overlooked fact is that these encounter frequencies play a critical role in defining efficient 39 

encoding strategies – given constraints on neural coding, more accurate encoding must generally be 40 

allocated to more frequently encountered stimuli [1,2]. Indeed, experimental studies confirm this theoretical 41 

insight, showing a dependency of preference orderings, choice patterns [3–7], and choice efficiency [3,8] 42 

on the frequency with which subjects encounter different rewards. 43 

This work has led to the conclusion that during the decision process, the brain adheres to principles 44 

of efficient coding, allocating resources to optimize decision outcomes [3,8–13]. A canonical example of a 45 

well-studied efficient code [13,14] is Divisive Normalization (henceforth DN) [15], which has been related 46 

to neuronal firing rates across many sensory modalities [16–19] and across various cognitive domains as 47 

well [20]. The DN function enables a system with limited information capacity to employ a flexible encoding 48 

of naturally occurring stimuli that is sensitive to encounter frequency [17,21,22]. Ample evidence has 49 

supported the notion that DN is also highly predictive of reward value encoding in the human and animal 50 

choice mechanism [6,7,23–25], although alternative value encoding mechanisms, some of which include 51 

division, have also been suggested [26,27]. 52 

At least one form of DN has been analytically shown to be an efficient code for stimuli with a 53 

probability of occurrence that is described by the asymmetrical heavy-tailed Pareto Type III distribution (see 54 

eq. (iv-vi) in Materials and Methods) [28]. This prompts the empirical question of whether the brain employs 55 

non-DN encoding functions when the statistical properties of the input stimuli (in our case, choice 56 

environments) are not Pareto-distributed. Would we expect to find evidence of divisive normalization across 57 

dimensions [28], or divisive encoding mechanisms in general [13], only in Pareto-distributed environments? 58 

The latter might imply that previous documentation of DN encoding mechanisms may say more about the 59 

stimulus distributions used in experiments than about constraints on encoding mechanisms. An alternative 60 

hypothesis, however, is that our brains are constrained to employ DN-like encoding mechanisms [13]. Such 61 

a constraint might reflect an adaptation of the nervous system to Pareto-distributed real-world natural 62 
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stimuli, such as the sensory [14,18,29] and even ecological [30,31] environments we typically encounter. 63 

Our primary aim here is therefore to assess whether the encoding function itself is sensitive to 64 

the structure of the environment – specifically, to differences in the shape of the distribution of valuations. 65 

In this study, our subjects complete a two-stage task design. The first stage recovers subjects’ 66 

mapping of dollar amounts from objective to subjective values. These mappings are then used in the second 67 

stage of the study, in which subjects face a binary-choice task where lotteries are drawn from two 68 

individually-tailored environments characterized by different distributions of subjective lottery valuations. In 69 

one environment, lottery valuations are Pareto-distributed, while in the other, lottery valuations are uniformly 70 

distributed (Fig. 1A). Our novel task design controls for individual heterogeneity in subjects’ risk 71 

preferences, thus ensuring that the second stage solely tests for contextual effects induced by the two 72 

environments.    73 

We test hypotheses about our subjects’ value encoding functions by fitting the patterns of errors in 74 

their choices with two random expected utility models (henceforth, RUM) [32,33]. The first one is a form of 75 

DN function designed for representation in risky choice [34]. As a non-DN benchmark, we use RUM with a 76 

power utility function that nests within its parameterization a linear, a concave, and convex encoder 77 

(henceforth, power utility; Fig 1B). Power utility is a common model in economic research for describing 78 

risky choice and has been applied across many subfields, including experimental settings [35–38], 79 

psychophysics [39], study of life-cycle consumption [40], and health [41]. (See [42] for a concise theoretical 80 

discussion of why power utility is so widely adopted and often fits choice data better than other functional 81 

forms.) Power utility is a natural comparator against which to evaluate DN. 82 

We use a form of DN to examine if subjects are better described as obligate-DN choosers who use 83 

DN in both environments, or alternatively, if subjects’ choices are better described with our DN function in 84 

one environment and with a power utility function in the other (Fig 1C).  85 

The form of DN we test incorporates information about the environment by tracking expected 86 

valuations, allowing for context dependency in subjects’ value encoding. Because the median valuation in 87 

the uniform environment is higher than in the Pareto environment, we further hypothesized that subjects 88 

would anticipate higher valuations in the uniform case, evidenced by a calibration of the DN function. 89 

 90 
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We find that in a Pareto-distributed environment, subjects employ an encoding of values that is well 91 

modeled by DN. However, we also find that the DN model better captures subjects’ choices in the uniformly 92 

distributed environment than does a standard power utility. This suggests that subjects’ choices are more 93 

accurately described by divisive encoders, like those found in DN models, than by standard power utility 94 

functions. We find further evidence for context dependency in subjects’ choices, as, within the constraints 95 

of DN encoding, they adapt their reward expectations according to changes in the specific statistical 96 

properties of the choice environment.  97 

Taken together, our results suggest that divisive mechanisms may be an inherent component of 98 

the encoding mechanism used during the choice process. Future work could generalize these findings to 99 

other types of statistical environments. Finally, the current study focuses on decision-making processes, 100 

but, given the dominance of DN representations across cortical systems, our findings may be of general 101 

interest to the study of encoding mechanisms in sensory and other cognitive domains.  102 

 103 

 104 

[Insert Fig 1 here] 105 

 106 

Fig 1. Research Question. (A) Choice environments are determined by the distribution of valuations. We 107 

compare a long-tailed bivariate Pareto Type III environment with a uniformly distributed environment for 108 

which DN is not an efficient code. Figures show 2D histograms of simulated choice trials with valuations in 109 

the range 𝑢!Î[0, 𝑢"#$% = 60] for every lottery 𝑘Î{1,2}. Each reward’s value was drawn from 40 bins. Insets 110 

show their corresponding marginal distributions. We simulate 100k valuations per environment. See 111 

Materials and Methods for further details. (B) Value encoding choice functions. We test two different RUM 112 

models: classic power utility (left) and DN (right). The figure shows the probability of choosing a lottery with 113 

valuation 𝑢& over a lottery with valuation 𝑢' for various parameter values in each model. Insets show the 114 

subjective representation of 𝑢& in power utility (R), and in DN (S). For every combination of 𝑢& and 𝑢', we 115 

simulate 1k binary choice sets. We allow stochasticity in choice by incorporating additive noise, drawn from 116 

h~𝑁(0,0.05 ∗ 𝑅#$%(𝑢1), such that 𝑅#$%(𝑢&) denotes the maximal subjective value of u1 in the power utility 117 
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model (and z~𝑁(0,0.05 ∗ 𝑆#$%(𝑢&) in the DN model, respectively). We cast 10K noisy draws per simulated 118 

trial and reported average choice probabilities across simulated sets. (C) Contour plots indicate the mass 119 

of occurrences of (𝑢&, 𝑢') choice trial combinations in each environment. Contours were laid over a 120 

representative DN model with a = 4, 𝑀 = 30 (middle right panel in (B)).         121 

 122 

Results 123 

Two-stage task design 124 

Seventy-six subjects completed a two-stage choice task. In STAGE I (Fig 2A left panel), subjects reported 125 

their valuations (willingness to pay) for 33 50/50 lotteries that pay either 𝑦& or 𝑦' dollars with a probability 126 

of 0.5 each (see S1 Table for a complete lottery list). These valuations were used to estimate, for every 127 

subject i, the curvature parameter of the expected power utility specification: 𝐸[𝑢"(𝑦)] = 0.5𝑦&
r! + 0.5𝑦'

r!, 128 

using a standard non-linear least squares (NLS) estimation. We note that in STAGE I, our goal was not to 129 

test normalization, but to flexibly capture heterogeneity in subjective valuations of lotteries (risk 130 

preferences). We therefore employed the standard expected power utility function, which is the most widely 131 

used and well-understood functional form for eliciting risk preferences [42].  132 

The subjective value function curvature (r") varied substantially from subject to subject (Fig 2E). 133 

Using individual r" estimates, we generated subject-specific distributions of rewards in terms of their 134 

subjective – rather than dollar – values for the STAGE II task (Fig 2B). This first step was critical. It allowed 135 

us to perform all our analyses in the domain of subjective value, removing simple utility curvature from our 136 

primary analyses and allowing us to create individualized choice sets with specific distributional properties 137 

that were essential for our design. Without this transformation, small subject-specific differences in utility 138 

curvature (risk attitudes) would have made the construction of probative choice sets required for the 139 

experiment impossible. 140 

In STAGE II, on two separate days, subjects made binary choices between 50/50 lotteries (Fig 2A, 141 

right panel), with 320 decisions on each day. We created two choice environments: on one day, subjects 142 
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were choosing between lotteries with subjective values drawn from a Pareto Type III distribution 143 

(henceforth, Pareto), and on the other day between lotteries with subjective values drawn from a uniform 144 

distribution. Subjects encountered each distributional environment on a different day (counter-balanced 145 

across subjects) to avoid contextual spillovers.  146 

Using these risky-choice lotteries, rather than choices over consumer goods, enabled us to 147 

generate continuous distributions of valuations for STAGE II and to fully control their distributional shape. 148 

Our decision to generate the distributions of STAGE II lotteries in subjective value space, rather than in 149 

dollar space, ensured that any observed environmental effects were not confounded by the heterogeneity 150 

in subjects’ subjective valuations of lotteries, that is, their risk attitudes (Fig 2E and S2 Table). Consider 151 

three subjects exposed to the same set of 50/50 lotteries with uniformly distributed dollar payoffs. Subject 152 

1 is risk-seeking: subjective value grows slowly (convex subjective value function); Subject 2 is risk-averse: 153 

subjective value grows more than proportionally (concave); Subject 3 is risk-neutral: subjective value is 154 

linear in objective value. Now, imagine we created a choice environment with uniformly distributed 50/50 155 

lottery payoffs (in dollar amount). The same uniform distribution would induce a left-skewed distribution of 156 

subjective values in Subject 1, a right-skewed distribution in Subject 2, and only for Subject 3 does the 157 

subjective value distribution remain uniform. Since what we wish to study is the subjective value distribution 158 

rather than the expected value distribution, we must first factor out this heterogeneity. Our two-stage 159 

procedure thus ensured that the shapes of the individually tailored distributions in STAGE II are controlled 160 

and comparable across subjects. This design is therefore crucial for valid between-subject comparisons of 161 

environment-induced effects and for cleanly addressing our central questions: how statistical environments 162 

shape the value-encoding function, and how well subjects adapt to these environments. 163 

Across subjects, we fixed the first moment (mean) of valuations and the range of monetary payoffs 164 

in both environments. Of course, this also fixed the second moment (standard deviation) of the uniform 165 

distribution across subjects. The second moment of the Pareto distribution (as measured in dollars) varied 166 

by subjects’ subjective valuations of money as assessed in STAGE I (risk attitudes) (Fig 2C, S1 Fig). 167 

Accordingly, this heterogeneity also varied the distributions of the high and low monetary payoffs in each 168 

lottery (S1 Fig). As a result, the median expected monetary payoff in each environment was fully determined 169 

by subjects’ risk attitudes, so that the difference in expected payoffs between environments was smallest 170 
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for risk-averse subjects (𝜌" < 1, S4 Fig). To ensure that we fully captured each distributional environment, 171 

we matched the mean and standard deviation of the choice sets with those of larger sets of 100k draws 172 

(Fig 2D). See Materials and Methods for further details on our sampling design.  173 

Overall, subjects appeared to pay careful attention during the study – only six subjects in the 174 

uniform environment, and nineteen subjects in the Pareto environment failed to choose the higher 175 

subjective value lottery in more than 20% of trials (S2 Fig). On average, subjects violated first-order 176 

stochastic dominance in 0.97% of trials in the uniform treatment and in 1.08% of trials in the Pareto 177 

treatment, respectively (S2 Fig). Note that a higher incidence of mistakes in the Pareto environment is 178 

expected. The correlational structure across lotteries made the value difference between lotteries (on 179 

average) smaller, and thus choices were harder in this case [43]. Finally, even though the experiment was 180 

quite demanding (320 trials in each of the two sessions), subjects’ performance was not affected by fatigue. 181 

The propensity to choose the lottery with the higher subjective value did not vary between the first and 182 

second halves of each experimental session (Pareto sessions: p=0.2791, uniform sessions: p=0.5109, 183 

paired t-test (df=75), S2 Fig).  184 

 185 

 186 

[Insert Fig 2 here] 187 

 188 

 189 

Fig 2. Experimental Design. (A) Timeline. In STAGE I, subjects reported their valuations for 33 lotteries. 190 

Valuations were used to recover the curvature of the subjective value function for each subject using NLS 191 

estimation. Based on those estimates, we generated subject-specific bi-dimensional uniform and Pareto 192 

Type III distributions of valuations for STAGE II of the study. In STAGE II, subjects completed two sets of 193 

320 binary choices between 50/50 lotteries (640 choices in total). (B) Bi-dimensional Pareto and Uniform 194 

distributions. In the uniform distribution, we created 40 bins of subjective values between 0 and the maximal 195 

payoff in the study ($60, 𝑢"#$% 	= 60r!) with eight lotteries in each bin. We then picked pairs of lotteries from 196 

this set to create binary choice sets. In the Pareto distribution, we used a Gamma-weighted scale mixture 197 

of exponential random variables to capture the covariance structure of the bi-variate Pareto distribution. (C) 198 
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Choice sets in STAGE II controlled for differences in individual subjective value function (risk attitudes), 199 

modulating the second moment (std) of the Pareto distribution (see eq. (vi) in Materials and Methods). The 200 

histograms show the bi-dimensional Pareto distributions and their marginals (with 100k draws per 201 

distribution) from three representative subjects: a risk averse subject (left), a risk neutral subject (middle), 202 

and a risk seeking subject (right). (D) Experimental sets with 320 trials were prone to under-sampling (see 203 

top, unmatched distribution). We matched experimental sets to the distributional shape of a larger set with 204 

100k draws (see bottom, matched distributions). The figure shows an example corresponding to the middle 205 

panel in (C). (E) Recovered estimates of subjective value curvature (risk attitudes) from STAGE I. See 206 

Materials and Methods and S1 Fig for further details. See S2 Table for a list of the estimated subjective 207 

value function curvatures (risk parameter 𝜌). 208 

 209 

Distributional properties of the choice environments 210 

influence subjects’ choice behavior 211 

Our overarching goal was to study how the distributional properties of the choice environment influenced 212 

the encoding of value, and whether subjects could flexibly switch between different types of encoding 213 

mechanisms, as evidenced by errors in their choice patterns, in different environments. We created the 214 

experimental choice environments with Pareto Type III and uniform distributions of valuations. In this 215 

section, we tackle the first part of our research question in a model-free manner, determining whether the 216 

distributional structure influenced the errors produced by our subjects in a meaningful manner.  217 

It is useful to introduce our hypotheses using an illustration. In Fig 3A-B, we indicate the probability of 218 

choosing the higher valued lottery, given the coupling of the (𝑢&, 𝑢') valuations in a choice set. Choices 219 

along the diagonal represent trials in which the two lotteries had the same or very similar valuations, 220 

whereas trials away from the diagonal correspond to choice sets in which the valuations of the two lotteries 221 

were substantially different. A central feature of DN is the calibration of the function used to represent 222 

subjective value (the decisional variable) to the input stimuli. That is, encoding/representational resources 223 

are allocated to the range of stimuli most likely to be observed (tuning) [15,25]. Thus, compared with non-224 
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divisive encoders, if DN governs the choice mechanism in a Pareto environment, we would expect subjects 225 

in this case to make more mistakes in choice sets containing elements further from the high-density center 226 

of the main diagonal, since these choices are less frequent. Conversely, we would also expect subjects in 227 

the Pareto environment to make fewer mistakes in choice sets containing elements nearer the main 228 

diagonal, since these choices occur more frequently. We find both patterns in our data. 229 

To statistically test whether the frequency of mistakes grew faster as choice sets moved away from the 230 

main diagonal in the Pareto environment, as compared with the uniform environment, we ran a probit 231 

regression with an indicator dependent variable equal to one for trials on which a subject selected the option 232 

with higher SV, and equal to zero otherwise. We controlled for the difference in difficulty across the trials 233 

by including the absolute value difference between the lottery valuations (|𝑢& − 𝑢'|) and for the general 234 

impact of the distribution by including a dummy for the Pareto distribution. The different rate of mistakes as 235 

a function of the distance from the diagonal in each environment is captured by a significant coefficient on 236 

the interaction of Pareto dummy and (|𝑢& − 𝑢'|) (Column (1) in Table 1). We found that choice accuracies 237 

increased with an increase in the subjective value distance between the two options, and that moving from 238 

the uniform distribution to the Pareto distribution reduced accuracy (see also discussion in the previous 239 

section). Importantly, in line with our hypothesis, we found a negative and significant interaction term, 240 

indicating that in the Pareto vs. the uniform case, subjects were more likely to make errors when 241 

encountering choice sets further away from the diagonal -- those sets being experienced less often in the 242 

Pareto environment. We conclude that encounter frequency, as defined by the Pareto distributional 243 

structure, did influence choice accuracy. 244 

To examine whether subjects calibrated their encoding function to the most frequently presented choice 245 

sets, we tested if they made fewer mistakes around the high-density center of the main diagonal in the 246 

Pareto environment. We ran a complementary probit regression focusing on twenty-two valuation bins from 247 

the center of the distributions presented in Fig 3A-B (out of an equally-spaced 40-bin space), which 248 

corresponded to lotteries with $9-$42 payoffs (Column (2) in Table 1). The center (medians) of the 249 

distributions depended on subjects’ subjective valuations of dollar amounts (r parameter). In the Pareto 250 

case, the smallest median was $11.45 and the highest was $33.58. Likewise, in the uniform case, the 251 
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smallest median was $22.85 and the highest was $41.53. Thus, we set a range of $9-42 to include the 252 

center of distributions for all the subjects in our sample.  253 

Since this regression focuses on the center of the distributions, the SV difference between the two 254 

lotteries is relatively small. Consequently, we excluded this variable from the model to avoid potential 255 

multicollinearity with the main variables of interest. In addition to the Pareto dummy regressor included in 256 

the baseline specification, we introduced a dummy variable indicating whether a lottery was located near 257 

the diagonal of the valuation space, as well as an interaction of this dummy with the Pareto dummy. 258 

Lotteries were defined as near the diagonal if the ratio between the two valuations satisfied  259 

0.9 < 𝑢2/𝑢1 < 1.1. 260 

Not surprisingly, choice accuracy was lower in choice sets around the diagonal, since these 261 

represented the most difficult choices in the experiment and exhibited the smallest SV difference. Crucially, 262 

we found a positive interaction term between the diagonal and Pareto dummies, suggesting that in the 263 

Pareto vs. uniform environment, subjects had higher accuracy in those particularly difficult trials within the 264 

highly sampled region.  265 

A graphical illustration of this finding is depicted in Fig 3C, which plots the subject-level change in the 266 

accuracy around the center of the distributions compared with their overall accuracy in each environment. 267 

As expected, in both environments, we trace a decline in subjects’ accuracy around the center of the 268 

distribution, since these are the most difficult trials in the experiment, though this decline is more moderate 269 

in the Pareto environment than in the uniform environment (one-sided paired t-test, p<0.0001).   270 

In the supplementary materials, we present two robustness analyses supporting these results. S7 Table 271 

replicates the findings from Table 1, using a Bernoulli specification in which the mean is constrained to the 272 

interval [0.5, 1) rather than the standard probit model. This specification addresses potential discontinuities 273 

in the model below chance level (50%) as the SV difference approaches zero. In addition, S3 Table 274 

demonstrates that the results reported in Column (2) of Table 1 remain robust when applying alternative 275 

definitions of the “center of the distribution” and “around the diagonal” regions.  276 

Together, these results suggest that in the Pareto environment, subjects adjusted their value encoding 277 

to increase choice accuracy rates at the center of the joint distribution, at the expense of the decreased 278 
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choice accuracy at the margins. This is suggestive evidence for some forms of divisive value encoding, 279 

where choice discriminability is the highest near the median of the distribution.  280 

 281 

Table 1. Results from the model-free analysis. Probit regressions with the dependent variable equal to 282 

1 when the subject chose the lottery with the higher SV, and zero otherwise. Column (1) model was run on 283 

the full sample. The independent variables are the absolute SV difference between the two lotteries, a 284 

dummy indicating the Pareto environment, and their interaction. Column (2) model was run on data 285 

including choice sets in the center of the distributions. The model includes a dummy for the Pareto 286 

distribution, an additional dummy equal to 1 if the lottery was taken from around the diagonal (and zero 287 

otherwise, see text for definitions), and their interaction. Standard errors clustered on subject in 288 

parentheses, * p<0.05, ** p<0.01, *** p<0.001.  289 

 
(1) (2) 

 

Full  

sample 

Center of the 

distributions 

SV difference 0.0002* 

 
(0.0001) 

Pareto -0.3311*** -0.1587*** 

 
(0.0405) (0.0381) 

Pareto*SV difference -0.0001* 

 
(0.0001) 

Near diagonal 
 

-0.7376*** 

  
(0.0683) 

Pareto*Near diagonal 
 

0.1839** 

  
(0.0602) 

Constant 1.3260*** 1.1175*** 

 
(0.0704) (0.0703) 

N 48640 22442 
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pseudo R-sq 0.015 0.034 

 290 

 291 

[Insert Fig 3 here] 292 

 293 

Fig 3. Model-free evidence for DN encoding. (A-B) Probability of choosing the higher-valued lottery given 294 

(𝑢&, 𝑢') valuations in a choice set. Data is aggregated over subjects. Within subjects, valuations are divided 295 

into 40 equally spaced bins. (A) The Pareto environment. (B) The uniform environment. (C) The change in 296 

the propensity to choose the higher-valued lottery around the center of the distribution, defined as bins  297 

#5-25 along the SV space diagonal, with a band of three bins below and above the main diagonal (illustrated 298 

by the dashed rectangles at the bottom). N=76.  299 

 300 

Evidence for DN-like value encoding across choice 301 

environments  302 

The findings in the previous section provided initial evidence that subjects adapted to the distribution of 303 

valuations and that subjects used some form of divisive encoding in the Pareto environment. The DN model 304 

enables subjects to focus their resources on the center (median) of the distributions – those valuations that 305 

they are more likely to encounter. By contrast, in the uniform environment, subjects are less likely to 306 

encounter these valuations, making DN encoding less beneficial. Nevertheless, such encoding would still 307 

yield different choice patterns from those under standard power utility. Hence, our next goal was to evaluate 308 

whether subjects used the same or different encoding mechanisms in each of the two environments. 309 

To answer this question, we tested which of two expected utility models – a form of DN, or power utility 310 

– better captures subjects’ choices. The DN model is regarded as a canonical encoding mechanism in the 311 

brain [15–17,19], including in the choice domain [7,24,25,44], and has been considered an efficient encoder 312 

[1,9,13,45]. One variant of the DN model (cross-normalized) has been proven to efficiently encode Pareto 313 

distributed environments [28].  314 
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We estimate a form of DN model that has been used to study risky choice behavior [34]. (See [46] for 315 

modeling subjects’ behavior in the same dataset with alternative DN specifications.) In this DN model, 316 

subject 𝑖’s STAGE II subjective value function of a lottery 𝑘 Î	{1,2} with payoffs 𝑥&,! or  𝑥',!is given by: 317 

(i) 𝑆",! = 	0.5 (*!(%",$))%! 		

(*!(%",$))
%!-.!

%! + 0.5
(*!(%&,$))%! 		

(*!(%&,$))
%!-.!

%! +	𝜀",!  318 

where ai is a curvature parameter, ui(×) is subject i’s STAGE I’s power utility function (i.e., 𝑢"(𝑥&,!) 	=319 

	𝑥&,!
/! ), M is a reward expectation parameter, and 𝜀",! is an additive decision noise drawn in each trial from a 320 

zero-mean normal distribution, such that e",!	~	𝑁(0, q01). The encodings of the two marginals are then 321 

combined using the 50/50 risk probabilities to arrive at the overall formula. In line with the previous set of 322 

results, we expected some form of DN encoding in the Pareto environment.  323 

The second model we examined was a power utility model, a common model in describing risky choice 324 

behavior [42], applied here to subjective rather than monetary values:  325 

(ii) 𝑅",! = 0.5F𝑢"(𝑥&,!)G
2! + 0.5F𝑢"(𝑥',!)G

2! + 𝜂",! 326 

The model has one free parameter (𝑟"), which captures the function’s curvature. When 𝑟" = 1, the 327 

function is linear. As in our DN model, we included an additive decision noise drawn in each trial from a 328 

zero-mean normal distribution, such that hi ~ N(0,qp). A consequence of our design – positive-payoff 50/50 329 

lotteries – is that Prospect Theory [47] and this model coincide. 330 

For every subject, we estimated both models using maximum-likelihood estimation (see Materials and 331 

Methods). The subject-specific recovered parameters are reported in S4 Table, and the sample medians 332 

are in Table 2. To determine, at the population level, which model better captured subjects’ choice patterns 333 

in each environment, we compared each subject’s Bayesian Information Criterion (BIC) scores across the 334 

two models in each environment. Options in the uniform environment had, on average, larger value 335 

difference, and responses in this environment were more accurate (S2 Fig) and less noisy (S3 Fig). 336 

Therefore, we only compared BIC scores of the two models within the same environment, and did not 337 

compare the models across the two environments.  338 
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In line with our hypothesis, we found that in the Pareto environment, subjects’ BIC scores were on 339 

average significantly lower, indicating a better model fit, for the DN model than for the power utility model 340 

(Fig 4A, one-sided Wilcoxon sign-rank test, Z=4.4603, p<0.0001). This was true for 48 subjects (out of 76). 341 

In the uniform environment, we, again, found that the BIC scores were on average significantly lower for 342 

the DN model (Fig 3D, one-sided Wilcoxon sign-rank test, Z=2.9692, p=0.0015) and this held for 42 (out of 343 

76) subjects. Among the subjects who had a lower BIC score for the DN model in one of the environments 344 

(41 in uniform, 48 in Pareto), 31 subjects, i.e., roughly three-quarters of each group of subjects, exhibited 345 

consistent preference for the DN model across the two environments. Fewer subjects (17) had consistently 346 

lower BIC scores for the power utility model in both environments. 347 

Moreover, for only four subjects, the curvature parameter in the power utility model was estimated as 348 

linear or as almost linear (𝑟" = 1±0.05). The mean and median r estimates were 0.608 and 0.366, 349 

respectively. Importantly, the asymmetrical distributions of the differences in BIC scores (see insets in Fig 350 

4A-B) indicate that while both models do (almost) equally well for most subjects, there is a group of subjects 351 

for whom the DN model predicts their choices much better (DBIC>20 for 29 subjects in Pareto and 18 352 

subjects in uniform).  353 

For a further comparison, we also recovered the pooled (aggregate) model parameters. S5 Table 354 

presents the recovered pooled estimates from this analysis. Note that this analysis could only be done in 355 

monetary space, so as to allow comparability of lotteries across subjects, and to recover meaningful 356 

estimates of the M parameter in the DN model. Here, too, we find that the DN model captured subjects’ 357 

choices better, evidenced by the lower BIC scores under aggregation of choices from both treatments 358 

(leftmost column), as well as within each environment (second and third columns). These results should be 359 

interpreted cautiously, since the reward distributions were not fully controlled in the monetary space (S1 360 

Fig).  361 

Next, we directly examined whether the DN model fully contextualizes information about the 362 

environment. We re-estimated subjects’ choices using the DN specification in Eq. (i), setting M equal to the 363 

true median of the subjective valuations encountered within each statistical environment (see Materials and 364 

Methods). At the aggregate level, the DN model with fixed M provided a better fit than the power utility 365 

model, as indicated by a lower BIC (S5 Table, column 1). When analyzed by environment, this advantage 366 
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persisted in the uniform case but not in the Pareto case (S5 Table, columns 2–3). Subject-level analyses 367 

mirrored this pattern (S5 Fig): In the uniform environment, BIC scores were significantly lower for the DN 368 

model (one-sided paired t-test, t(75) = 1.735, p = 0.0434), whereas in the Pareto environment, the two 369 

models performed comparably (t(75) = 0.975, p = 0.1663). This analysis is, nevertheless, less suited to 370 

testing our main hypothesis because fixing M does not allow for partial adaptation. The model’s relative 371 

success in the uniform environment underscores the value of DN-like contextual choice models compared 372 

with non-contextual models. 373 

Another way to examine the effect of the distributional environment on subjects’ value-encoding – and 374 

to validate our task design – is to assess the relationship between subjects’ subjective valuation estimates 375 

from STAGE I (𝜌, see Fig 2E) and the STAGE II parameters: a in the DN model, and 𝑟 in the power utility 376 

model. The estimated parameters in STAGE II are multiplicative combinations of the STAGE I parameters. 377 

Therefore, if participants were not adjusting to the environment, we would simply find that in STAGE II, and 378 

independent of the environment, a power utility model with the exponent equal to one (i.e. 𝑟" = 1) would fit 379 

the data best. Figs 4C-4F suggest that this is not the case, further indicating that the environments 380 

influenced subjects’ value encoding – specifically through capturing the residual curvature attributable to 381 

changes in the statistical environment. We also note that the two sets of parameters were fit on different 382 

datasets: r" was recovered from STAGE I data, whereas a" and 𝑟" were recovered from STAGE II data, 383 

thereby highlighting that the STAGE II parameters can be attributed to environmentally induced effects.  384 

 Given the nature of our design, a hyperbolic relationship between STAGE I 𝜌 and the STAGE II 385 

parameters (i.e., the function 𝑦 = 1/𝑥) would imply that STAGE I curvature is undone in STAGE II in both 386 

models. In the power utility model, this would also imply linear encoding of monetary payoffs (because 387 

(xr)1/r=x). In contrast, in DN, it would mean that all curvature in STAGE II is associated with the DN 388 

encoding.  389 

Fig 4C-F plots STAGE II parameters against STAGE I r, highlighting two key findings: (a) the scatter 390 

of points away from the hyperbolic function (𝑦	 = 	1/𝑥) indicates that there remains a residual curvature 391 

attributable to the statistical environments, and (b) in both the Pareto and uniform environments, the 392 

relationship between 𝜌 and the DN parameter (Figs 4C and 4E) is considerably closer to hyperbolic than 393 

that between 𝜌 and the power utility 𝑟 parameter (Figs 4D and 4F). This suggests that, although the 394 
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environments further modified the curvature of the encoding function, the DN function better captured 395 

STAGE II’s subjective value functions. To quantify this effect, we compared the root-mean-squared errors 396 

(RMSE) between the hyperbolic function and the parameters in both models and confirmed that across the 397 

two environments, the a parameter of the DN model was more likely to exhibit this hyperbolic relationship 398 

(a: Pareto: RMSE=0.6491, uniform: RMSE=0.6585; r: Pareto: RMSE=0.8109, uniform: RMSE=0.8588).  399 

Taken together, all these results strengthen the notion that subjects used DN-like encoding of value in 400 

both environments.  401 

 402 

Table 2. Median estimates.  403 

 404 

 405 

[Insert Fig 4 here] 406 

 407 

Fig 4. Model-fitting. (A-B) Each dot is one subject’s DN model BIC score (y-axis) plotted against the same 408 

subject’s power utility BIC score (x-axis). A dashed 45-degree line indicates when both models are equally 409 

successful. Inset shows the difference in BIC scores (𝐵𝐼𝐶34562 	− 	𝐵𝐼𝐶01). (A) The Pareto environment. (B) 410 

The uniform environment. (C-D) Relationship between the STAGE I curvature of the subjective value 411 

function (r) and STAGE II subjective value functions in the Pareto environment. The dashed curve indicates 412 

a hyperbolic function 𝑦 = 1/𝑥. (C) DN model (a parameter). (D) Power utility model (𝑟 parameter). (E-F). 413 

Same as (C-D), but for the uniform environment. Dots indicate individual subjects, + indicate the sample 414 

averages. N=76.   415 

 Power utility model DN model 

Parameter 𝑟 q3 BIC 𝛼 𝑀 q01 BIC 

Uniform 0.379 0.054 121.120 1.299 23.216 0.0233 104.670 

Pareto 0.528 0.103 184.761 1.358 18.875 0.026 154.482 
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Context-dependency: adaptation of the encoding function to 416 

the choice environment 417 

Our next aim was to examine whether subjects calibrated their encoding functions according to the 418 

properties of the two different environments. We found that, for all subjects in our sample, the medians of 419 

the subjective valuations in the uniform environment were higher than in the Pareto environment (sample 420 

medians: 18.721 vs. 14.723 util units, respectively, D= 3.998, one-sided Wilcoxon sign-rank test between 421 

subject-specific medians, Z=7.572, p<0.0001). The reward expectation 𝑀 in the DN model tracks the 422 

median of the reward distribution, and hence, we hypothesized it would be higher in the uniform 423 

environment. Consistent with this hypothesis, the sample median of the recovered 𝑀 parameters in the 424 

uniform case was higher by 4.99 (in utility units) than in the Pareto case (Table 2, also corroborated by a 425 

one-sided Wilcoxon sign-rank test, Z=2.8907, p=0.0019). This difference between the recovered 𝑀 426 

parameters was very close to the actual difference between the distributions’ medians, indicating that 427 

subjects, at least at the sample-level, quite precisely calibrated their encoding to the difference in reward 428 

expectation. On the subject level, we found that for 44 out of 76 subjects estimated 𝑀 was higher in the 429 

uniform environment (Fig 5A).  430 

We also examined how the change in recovered 𝑀 across environments related to the true 431 

difference in median payoffs. To make these parameters comparable, we expressed 𝑀 in dollar units 432 

(i.e., MO 7 = 𝑀"

"
'!). Perhaps counterintuitively, we found a negative correlation between the two measures  433 

(𝑟 = –0.279, 𝑝 = 0.015; S4 Fig), indicating that larger differences in true payoffs across environments were 434 

estimated as smaller differences in 𝑀. However, this negative correlation arises mechanically from the 435 

relationship between median payoffs and subjects’ risk preferences (the r parameter). This result is further 436 

supported by the positive correlation between r and ΔMO 7 (𝑟	= 0.311, 𝑝 = 0.006; S4 Fig).       437 

Our pooled estimation supports this conclusion with higher estimates of 𝑀 in the uniform 438 

environment (𝑀(𝑢𝑛𝑖𝑓𝑜𝑟𝑚) = 66.653 and 𝑀(𝑃𝑎𝑟𝑒𝑡𝑜) 	= 55.561, second and third columns in S4 Table, 439 

p<0.001. As a robustness check, we estimated the DN model using the full dataset with the data from both 440 

environments and included an additive dummy variable for the Pareto environment in the estimation of the 441 
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𝑀 parameter (𝑀	 = 	𝑐𝑜𝑛𝑠𝑡𝑎𝑛𝑡	 +	𝑀3$2684	𝑥	𝑃𝑎𝑟𝑒𝑡𝑜). The output of this model split 𝑀 into a constant, 442 

corresponding to the estimate of 𝑀 for the uniform environment, and an additional coefficient 𝑀3$2684  that 443 

captured the difference in 𝑀 in the Pareto relative to the uniform environment. We found 𝑀3$2684 to be 444 

negative and significant (p<0.001), indicating 𝑀 was lower in the Pareto environment.  445 

As an additional test of subjects’ adaptation to the two statistical environments, we examined the 446 

stability of the 𝑀 parameter. Firstly, we tested whether the statistical structure in the uniform environment 447 

may have been less informative for choosers employing the DN model. As a result, the recovered 𝑀 values 448 

would be noisier than in the Pareto environment. To allow interpretability of 𝑀 across subjects, we focused 449 

on the pooled estimates in dollar space. Indeed, we found that the standard error of 𝑀 estimate was 450 

substantially larger in the uniform vs. the Pareto environment (15.31 vs. 9.01, S5 Table), suggesting that 451 

subjects had greater difficulty calibrating the 𝑀 parameter to the uniform environment.  452 

Secondly, we tested whether a longer exposure to a given statistical environment led to more 453 

precise estimates of 𝑀. For each environment, we estimated 𝑀 for early trials (#1-160) and late trials (#161-454 

320), separately in each session (S6 Table). We found that in the Pareto environment, the 455 

recovered 𝑀 values did not change significantly (54.6 in early trials vs. 56.5 in late trials). By contrast, in 456 

the uniform environment, we observed substantial within-session variability, and the 457 

recovered 𝑀 decreased from 75.2 in early trials to 59.5 in later ones. Notably, the latter estimate is closer 458 

to that of the Pareto environment, though still somewhat higher, reflecting the relative differences in the 459 

environments’ actual medians. These two results provide additional evidence that subjects calibrated to the 460 

statistical structure of both environments.  461 

In contrast to the 𝑀 parameter, we had no prior hypotheses regarding the model’s curvature 462 

parameter a. Nevertheless, comparing subject-specific estimates, we found that, on average, the a 463 

parameter was higher by 0.1593 in the Pareto environment (one-sided Wilcoxon sign-rank test, Z=1.9987, 464 

p=0.0228, Fig 5B). This result may indicate that higher a values in the Pareto environment allowed better 465 

discriminability between the more frequently encountered lottery options, as also indicated by our model-466 

free analysis (Table 1). However, this result was not fully replicated in the pooled estimates. When 467 

estimating each environment separately, we found that recovered parameters were almost identical 468 

(a*9":42# = 0.93, a;$2684 = 0.92, S4 Table, second and third columns). A full model with random effect for 469 
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the Pareto environment (similarly to the one run on 𝑀) revealed that there was a tuning of the function 470 

curvature when switching between environments (S4 Table, rightmost column, p<0.001).  471 

The power utility model is not designed to capture the dependence of the subjective value function 472 

on the distribution of valuations and hence, we did not anticipate an adaptation of the function’s curvature. 473 

Indeed, when comparing estimates of 𝑟 across the two environments, we obtain inconclusive results. While 474 

the pooled estimates indicated higher 𝑟 values in the Pareto environment (S4 Table), the subject-level 475 

estimates pointed in the opposite direction (Fig 5C, one-sided Wilcoxon sign-rank test between subject-476 

level estimates of 𝑟, Z=0.051, p=0.480).  477 

To conclude, we found that subjects adapted the parameters of the DN encoding function to the 478 

two environments in line with our hypothesis, showing context dependency in choice.     479 

 480 

[Insert Fig 5 here] 481 

 482 

Fig 5. Cross-environment adaptation. (A-B) Adaptation of the encoding function in the DN model. (A) 483 

Best-fitting 𝑀 parameter in the uniform (x-axis) vs. the Pareto (y-axis) environments. Estimates of 𝑀’s are 484 

in utility space. Left inset: outliers. Right (diagonal) inset: Difference in the estimates of 𝑀 across choice 485 

environments (𝑀*9":42# −𝑀;$2684). Insets do not show three additional (risk-seeking) subjects whose 𝑀’s 486 

are >400 (in util units). Dots indicate individual subjects, + indicate sample average without the inset 487 

outliers, N=76. (B) same as (A) for the DN’s a parameter. (C) Adaptation of the encoding function in the 488 

power utility model. Same as (B), but for the r parameter from the power utility model. (B-C) Dots indicate 489 

individual subjects, + indicate sample average, N=76.   490 

  491 
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Discussion 492 

In this study, we tested how the distributional properties of choice environments affect value encoding. In 493 

particular, we were interested in whether the subjective value of rewards is encoded via a mechanism such 494 

as divisive normalization (DN) exclusively in the Pareto environments akin to those for which it is probably 495 

efficient [28], or whether a DN representation is also employed in environments characterized by different 496 

reward distributions. To this end, we designed an experiment in which subjects were asked to make choices 497 

in two distinct statistical environments. In one environment, rewards were drawn from a Pareto distribution 498 

of valuations, while in the other environment, valuations were uniformly distributed.  499 

 Our results indicate that subjects in our study were better described as using a DN mechanism 500 

than a power utility mechanism to encode the subjective value of rewards, regardless of which of our two 501 

distributions the rewards were drawn from. As expected, the key parameter of the model tracked the median 502 

of the distribution. A model-free analysis indicated that, as compared with the uniform environment, subjects 503 

in the Pareto environment made fewer mistakes when choice sets were drawn from the center of the 504 

distribution at the expense of the margins, in accordance with a principal property of the DN function. We 505 

then fitted our subjects’ choices with two RUMs – a RUM with a DN-like utility function and the other a 506 

standard RUM with a power utility function. Our subject-level and pooled model-fitting results suggested 507 

that the DN model better captured subjects’ choice patterns in both the Pareto and the uniform 508 

environments (Table 2, Fig 5C-D and S5 Table). In line with the actual statistical properties of the two 509 

environments, subjects had higher reward expectations in the uniform environment. Taken together, these 510 

findings suggest that subjects’ choices were affected by the context of the choice environment, and that 511 

their choices were better described by DN-like divisive encoders than a more standard power utility model 512 

(Fig 6).  513 

 514 

[Insert Fig 6 here] 515 

 516 

Fig 6. Summary of main findings.  517 

 518 
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One reason to see DN encoding, even across environments, is that Pareto distributions are very 519 

common in the real world, and the human brain has evolved a mechanism that accords well with natural 520 

environments. Indeed, numerous sensory stimuli are characterized by Pareto-like statistical properties 521 

[1,14,18,29]. On a larger scale, Pareto distributions also describe various ecological quantities, such as 522 

temporal and spatial measures of biodiversity [48–51]. More relevant to value-based decisions is that 523 

certain economic and financial variables in modern societies [52,53], including consumption of several 524 

categories of consumer goods [54], have Pareto-like properties.  525 

Another important finding is that, compared with the standard utility functions used in economics, 526 

DN provides the brain with a rather flexible tool for the representation of choice options [34,44]. Given the 527 

specific parameterization we employed for DN, our model embeds the standard concave utility function, but 528 

is also suitable for capturing preferences that follow S-shaped functions, similar to the one suggested by 529 

Prospect Theory [55] with expectations-based reference dependence [56]: The 𝑀 parameter in the DN 530 

model tracks the median of rewards (expectations), which allows for scale-invariant adjustments to different 531 

environments, while ensuring a fine discrimination between stimuli that are in the center of the distribution 532 

[2,9,13,57]. These adjustments – also evident in our data – give rise to spatial and temporal context effects 533 

in choice processes [25,44,58–62], and are also the core reason for some notable perceptual illusions 534 

[63,64].  535 

Our findings also imply that some choice patterns should not be regarded as built-in decision 536 

biases, errors, or mistakes. Rather, they reflect adjustments of the brain, as a constrained system, to its 537 

environment, thus reflecting a rational value-encoding mechanism [2,13]. Such an observation can explain 538 

the under-sampling of rare events when subjects adjust to new choice environments [65,66] since the main 539 

focus of the system is on the mass of occurrences.  540 

Our primary aim in the current study was to assess whether the encoding function was sensitive to 541 

the distributional structure of the environment. Future work could vary both distributional shapes and their 542 

means (in a factorial design) for a targeted test of adaptation to study which environmental statistic underlies 543 

normalized encoding. Another interesting question that stems directly from our research is to what extent 544 

our results generalize beyond decision-making processes to other cognitive functions, such as sensory 545 

processing. Even though various natural sensory stimuli are described by Pareto-like properties [14,18,57], 546 
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we also frequently encounter, and are required to process, non-natural non-Pareto stimuli [67,68]. Our 547 

findings, therefore, invite further investigation into the effects of DN encoding on the sensory processing of 548 

non-Pareto stimuli.   549 

550 
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Materials and methods 551 

Some of the data in this manuscript have been used in the conference paper in reference [46]. 552 

 553 

Experimental design 554 

Valuation task (STAGE I)  555 

Our goal was to establish whether the brain employs different value encoding models in environments with 556 

different reward distributions. To eliminate any additional prior heterogeneity in subjects’ subjective 557 

valuations of money, we generated distributions of rewards in the subjective value (SV) space instead in 558 

dollar amounts (or expected values). To map the subject-specific SV space, we first recovered individual-559 

specific subjective value functions over dollar amounts. To do this, in STAGE I, we used a valuation task, 560 

in which subjects reported their willingness to pay to participate in a lottery. See S1 Table for the list of 33 561 

lotteries used in this task. On each trial, subjects were presented with a visualization of a 50-50 lottery on 562 

the computer screen and had to type in their willingness to pay to participate in it as a dollar amount (Fig 563 

2A). For each lottery, the valuation could range between the current lottery’s minimal and maximal payoff, 564 

in $0.10 increments. All subjects completed the same 33 trials in an order randomized at the subject level. 565 

At the end of the session, the realization of one randomly selected trial was implemented for payment, using 566 

a Becker–DeGroot–Marschak (BDM) [69] procedure which was designed to elicit truthful valuations. 567 

 568 

Choice task (STAGE II). STAGE II was designed to test whether the distribution of rewards (lotteries with 569 

different subjective valuations) in a choice environment affects what value encoding model subjects use. 570 

Subjects were asked to choose the 50-50 lottery they preferred from two available options that varied from 571 

trial to trial. Lottery payoffs ranged between $0 and $60 in $0.10 increments. Overall, subjects made 640 572 

binary choices that were divided into two blocks of 320 trials each and presented on subsequent days. Our 573 

experimental manipulation was that in each block, the valuations were drawn either from a Pareto Type III 574 

distribution or from a uniform distribution (Fig 2A-B). The order in which subjects experienced these 575 

environments was counter-balanced across subjects. One trial was randomly selected for payment at the 576 
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end of each experimental session. Subjects also completed additional 640 trials with six-option choice sets 577 

with lottery valuations drawn either from a Pareto Type III or uniform distributions. Thus, in total, in each 578 

environment subjects encountered two 320 choice blocks. The six-option blocks were designed to examine 579 

another research question that is beyond the scope of the current study and will be reported in a separate 580 

paper. Blocks were presented in an order randomized across subjects but on a given day, all blocks were 581 

drawn from the same distribution. Payments for STAGE II included a realization of one choice from each 582 

of the two sessions, and could be drawn either from the two-options sets or from the six-options sets.  583 

 584 

Subjective Value of Money. We used each subject’s STAGE I single lottery valuations to estimate their 585 

subjective value function over money. We expressed each subject i’s subjective value of a 50-50 lottery 586 

that paid 𝑦& or 𝑦' each equally likely, using an expected power utility function as: 587 

(iii) 𝐸[𝑢"(𝑦)] = 0.5𝑦&
/! + 0.5𝑦'

/! 588 

If the curvature parameter r" < 1, then subject i is risk-averse. When r" = 1, the subject is risk-neutral. If 589 

r" > 1, the subject is risk-seeking. Therefore, the certainty equivalents (c) that participants stated were 590 

converted to subjective values using the same power utility function such that 𝑐 = 𝐸[𝑢𝑖(𝑦)]
&//	. We ran an 591 

NLS regression to estimate the r parameter separately for each subject. 592 

 593 

 We used the subject’s’ estimated r", to pick different combinations of lottery dollar payoffs to create 594 

lotteries that had a specific SV to that individual. This enabled us to generate sets of lotteries whose implied 595 

SV distributions matched our target distributions (see below), regardless of individual differences in the 596 

curvature of the subjective value function.  597 

 598 

Distributions of valuations 599 

Uniform Distributions of SVs. For each subject i, we computed the upper bound of the distribution as the 600 

SV of the maximal possible monetary payoff in the study, which was $60 (i.e., 𝑢"#$% = 60r!). We then divided 601 

the range [0,uimax] into 40 equally-spaced SV increments. For each of the increments, we created eight 602 
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different lotteries, which would give the subject the subjective value in exactly this bracket (for a total of 320 603 

lotteries). Since the joint distribution of a two-dimensional uniform distribution is independent, and hence 604 

determined by its marginals, we then picked pairs of lotteries from this set for generating binary choice sets.  605 

 606 

Pareto Type III Distributions of SVs. In the Pareto treatment, subjective lottery valuations are drawn from 607 

a bivariate Pareto distribution with a joint pdf 𝑓"='𝑢#,%, 𝑢#,&) given, for every subject i and 𝑘Î{1,2} 608 

enumerating the choice option within the choice set (see Eq. 7 in reference [28], with µ1=0 to match the 609 

lower bound of the uniform distribution and to avoid negative valuations), by 610 

(iv) 𝑓*!F𝑢",&, 𝑢",'G = 𝛽'
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Its marginals are log-logistic (or Fisk) distributions, with pdf  612 
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We matched, for each subject, the conditional mean to the expectation of the uniform distribution, which 614 

was $30 (and 𝑢D̂ = 30/! in SV-space); the conditional mean is given, for b>1/2, by 615 

(vi) 𝐸F𝑢",!_𝑢",EG = 𝜎",! a1 +	b
*!,.
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	 , ∀𝑘 ≠ 𝑙 616 

where G denotes the Gamma function. We set b = 3, and solve for s".  617 

Following Proposition 4 in [28] and using the subject-specific parameterization, we generated the 618 

random variables following Pareto Type III distributions as  619 

(vii)  𝑢",! =	𝜎",! h
J!,$
K!
i
"
* ,							𝑓𝑜𝑟	𝑘 ∈ {1,2} 620 
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where 𝑌",!~𝐸𝑥𝑝(l = 1) and 𝑍"~𝐸𝑥𝑝(l = 1) independently of all 𝑌",!. Fig 2C presents three examples for 621 

such distributions with different values for r".  622 

Note that using only 320 draws may lead to under-sampling of the distributions. Therefore, to fully 623 

capture the shape of the distribution, for each subject, we first generated joint Pareto distributions with 100K 624 

draws. We then created small 600-draw experimental distributions that matched the large 100k-draw 625 

distributions, allowing a deviation of up to 0.2 utils from the actual first and second moments (mean and 626 

standard deviation) of the large 100k-draws sets. Fig 2D compares matched and unmatched small sets, 627 

corresponding to the large 100k-draws set presented in Fig 2C (middle panel). Finally, we truncated the 628 

long tail of the Pareto Type III distributions at 𝑢"#$% = 60r! (eliminating 6.5 to 23.83 percent of the 629 

distribution, depending on the r parameter, the curvature of the subjective value function), to match the 630 

upper bound of the uniform distribution and to avoid extreme reward amounts. We then sampled 320 SVs 631 

at random from the remaining valuations, which constituted the experimental subject-specific Pareto 632 

distributions. 633 

 634 

Generating Binary Choice Sets from the Distributions of Valuations. The final step was to generate 635 

lottery dollar amounts from the SV distributions. For each lottery 𝑘 with a valuation 𝑢!, we first randomly 636 

drew the first monetary payoff 𝑥&,! from a range of possible payoffs $0-xmax in $0.10 increments. We had to 637 

restrict the maximum value of 𝑥&,!  to make sure that including it in the lottery, does not exceed the lottery 638 

valuation (𝑢!), and thus to avoid negative values for the second lottery payoff. We determined the maximal 639 

value of the first payoff 𝑥&,! using the minimum function:    640 

(viii) 𝑥&,!#$% = min	{(2𝑢!)
"
', 60}. 641 

We then solved for 𝑥',! giving rise to the desired 𝑢!, rounded to one decimal place, using the following 642 

equation: 643 

(ix)  𝑥',! = F2𝑢! − (	𝑥&,!)/G
"
'. 644 

S1 Fig shows how the heterogeneity in r values affected the distributions of 𝑥&,! and 𝑥',! . 645 
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 646 

We restricted the share of trials with first-order stochastic dominance (FOSD) (trials on which both 647 

lottery payoffs of one lottery were higher or equal to the other lottery’s payoffs) to 45 percent. For subjects 648 

with r"®0, we could not generate experimental sets with only 45 percent of the trials. Thus, we fixed  649 

r" = 1, for all subjects with r" < 0., (a total of 4 subjects, see S2 Table), limiting the interoperability of data 650 

from this small number of subjects. In contrast, for two subjects with very high r’s (r" > 4), we also had to 651 

fix r" = 1 in STAGE II of the study, since a very large tail from their Pareto distribution of SVs exceeded 652 

$60. Respectively, the interoperability of data from these subjects is also limited. Nonetheless, we wanted 653 

to avoid any unjustified elimination of data, and therefore analyzed data from these six subjects. Importantly, 654 

our main qualitative findings do not change once we remove these subjects from our sample. 655 

  656 

Procedures 657 

Sessions 658 

Experimental sessions were carried out online via Zoom while subjects completed the task on a website. 659 

Data collection took place between autumn 2021 and summer 2022. After instruction, subjects had to 660 

successfully answer a set of comprehension questions about the procedure before starting STAGE I. They 661 

could participate in STAGE II of the study only if they completed all trials in STAGE I. Subjects received all 662 

payments after completing both STAGE I and STAGE II. Subjects received a $10 participation fee and on 663 

average $24.5 in STAGE I (range $0-60) and $76.02 in STAGE II (range $7.3-120) from the decision task. 664 

All amounts are in Australian dollars. All parts of the experiment were self-paced. Both the valuation and 665 

the choice tasks were programmed in the oTree software package [70]. 666 
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Participants 672 

 We recruited participants from various departments at the University of Sydney. Seventy-six subjects (44 673 

females, mean age=21.8, std: 3.34, range: 18-30) passed the comprehension questions and completed 674 

STAGE I and the two choice tasks of STAGE II. 675 

 676 

Model Fitting 677 

Sample-level (pooled) estimates. We estimated subjects’ aggregated choice data via a probit choice 678 

function with maximum likelihood estimation (MLE). Standard errors were clustered at the subject level. 679 

Thus, in the pooled estimation subjects were treated as one representative decision-maker. In this analysis, 680 

we used lotteries’ monetary rewards (as opposed to their subjective valuations) to allow meaningful 681 

estimates of DN’s 𝑀 parameter, and to confine the range of lottery payoffs. For both DN and power utility 682 

models, we report the results from models estimated on the full dataset and separately on each choice 683 

environment. To test the possibility of adaptation of the encoding function to the choice environments, we 684 

further report the results from three additional models estimated on the full dataset, which also included a 685 

dummy variable indicating the Pareto environment for the reward expectation, 𝑀 parameter (DN) as  686 

𝑀	 = 	𝑐𝑜𝑛𝑠𝑡𝑎𝑛𝑡	 +	𝑀;$2684	𝑥	𝑃𝑎𝑟𝑒𝑡𝑜 and similarly for the functions’ curvature parameters a (DN) and 𝑟 687 

(power utility), respectively.        688 

 689 

Subject-level estimates. DN. In each choice environment, we recovered subject-specific estimates of the 690 

free parameters, restricting the search space as follows: aÎ[0,1.5], 𝑀Î[0, 𝑢"#$%] and q > 0 (see equation (i) 691 

in the text). We employed MLE using the Nelder-Mead algorithm with a max-iteration limit of 1,000 and a 692 

stopping criterion of 0.5 tolerance. We initialized 𝑀 to the distributions’ medians. 𝜃 was initialized at 0.03, 693 

matching the sample-level pooled estimate (see S5 Table), and the 𝛼 parameter was initialized at 1. For 694 

calculating the likelihoods, in each of the 320 trials, we generated 10,000 samples with randomly drawn 695 

Gaussian noise. The log-likelihood function was thus given by –  696 

 697 

(x) 𝑙𝑜𝑔ℒF𝛼" , 𝑀" , 𝜃"_𝑢",8G = 𝑦",8log h𝑃𝑟F𝑦",8 = 1_𝑢",8Gi + (1 − 𝑦",8)𝑙𝑜𝑔FPrF𝑦",8 = 0_𝑢",8GG, 698 
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Where 𝑦",8 = {0,1} indicates the subject’s i choice in trial 𝑡 = {1,… ,320}. 699 

 700 

Power utility. We fitted the power utility model to recover subject-specific estimates of the 𝑟 and q 701 

parameters using a similar procedure. We restricted the search space as follows: 𝑟Î{0,1.5}, and q > 0 (see 702 

equation (ii) in the text). 𝜃 was initialized at 0.03, matching the sample-level pooled estimate (see S5 Table). 703 

For the r parameter, we took ten random initializations in the range {0.1,5} with a precision of 5. All other 704 

procedures were identical to the DN model. 705 
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Supplementary Information 872 

S1 Fig. Representative Sets in STAGE II. Left – a risk averse subject, middle – a risk neutral subject, 873 

right – a risk seeking subject. Top to bottom: (1) Distributions of the high winning amount in Lottery 1 (in 874 

dollars); (2) Distributions of the low winning amount in lottery 1 (in dollars); (3) Distribution of the expected 875 

earnings (EV) of Lottery 1 (in dollars); (4) Distributions of the valuations (u1) of Lottery 1 (in util units); (5) 876 

2-dimensional histogram of the valuations of Lottery 1 and Lottery 2 (u1 and u2, in util units). 877 

S2 Fig. Descriptive statistics. (A) violins show the share of trials in which subjects chose the lottery with 878 

the higher subjective value. (B) violins show the number of FOSD violations per subject. Dots indicate 879 

individual subjects. N=76. (C-D) Share of trials in which subjects chose the lottery with the higher SV, first 880 

half of the session (trials 1-160), compared with the second half of the session (trials 161-320). Each gray 881 

line indicates a subject. Colored lines are sample averages. (C) Pareto distribution sessions. (D) Uniform 882 

distribution sessions.  883 

S3 Fig. Noise estimates. Comparing the best-fitting 𝜎 parameter (decision noise) across the distributional 884 

environments reveals noise levels were higher in the Pareto environment. Left - DN model (one-sided 885 

Wilcoxon sign-rank test, Z=2.2314, p=0.0257). Right - Power Utility model (one-sided Wilcoxon sign-rank 886 

test, Z=2.9172, p=0.0035). Scatters indicate individual subjects. N=76.   887 

S4 Fig. Distributions’ medians. (A-B) Distributions of median payoffs (in dollar amounts), (A) Pareto, (B)  888 

uniform. (C) median of monetary payoffs across environments vs subjects’ risk preferences, captured by 889 

the r parameter from STAGE I. (D) change in the true median of monetary payoffs across environments vs 890 

subjects’ r parameter (scatters are equivalent to the grey lines in (C)). (E) Change in the true median payoff 891 

across environments compared with the change in the recovered 𝑀O" parameter across the two 892 

environments. (F) Subjects’ risk (r parameter) compared with the change in the recovered 𝑀O" parameter 893 

across the two environments. (D-F) Each scatter represents one subject. N=76. 894 

 895 
S5 Fig. Model-fitting, Power utility compared with a DN model where M is fixed. Top - Each dot is one 896 

subject’s DN model BIC score (y-axis) plotted against the same subject’s power utility BIC score (x-axis). 897 
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A dashed 45-degree line indicates when both models are equally successful. Bottom - the difference in BIC 898 

scores (BICpower – BICDN). Left panels show the uniform environment, and right shows the Pareto 899 

environment.  900 

S1 Table. Lotteries used in STAGE I. 901 

S2 Table. Individual-level estimates of risk preferences from subjects’ bids in STAGE I. (*) For these 902 

subjects we could not generate distributions of valuations for STAGE II that would adhere to our 903 

requirement to limit the number of trials with FOSD violations (when ri®0), or without having to censor a 904 

very large tail of the Pareto distribution (when ri>4). Instead, for these subjects we plugged-in ri=1 to 905 

generate the distributions for STAGE II. 906 

S3 Table. Robustness checks for the findings presented in Column (2) in Table 1. We vary the 907 

definitions for center of the distributions (center) and around the diagonal (diagonal). Column (1) 908 

corresponds to the regression presented in the Main Text. 909 

S4 Table. Individual-level best-fitting model parameters across environments (STAGE II). (*) Subjects 910 

who had either a STAGE I estimate of ri=0 or ri>4. For those subjects, we could not generate distributions 911 

of valuations for STAGE II that would adhere to our requirement to limit the number of trials with FOSD 912 

violations (when ri®0), or without having to censor a very large tail of the Pareto distribution (when ri>4). 913 

Instead, for these subjects we plugged-in ri=1 to generate the distributions for STAGE II. 914 

(**) Subjects who had >20 FOSD violations in at least one of the treatments. 915 

S5 Table. Pooled estimates, dollar space. The table shows recovered parameters for the DN model (top 916 

rows), the DN model where M is fixed as the true median of the distributions (middle rows), and the Power 917 

utility model (bottom rows). In practice, to allow a better identification of the model parameters, we estimated 918 

the parameter t, such that t=Ma. We recovered M post-hoc by simply plugging-in t and a into the equation. 919 

Standard errors in parentheses, + p<0.1, * p<0.05, ** p<0.01, *** p<0.001.  920 

S6 Table. Behavioral dynamics of fitted parameters. Pooled estimates in dollar space, early vs late trials 921 

in each statistical environment. In practice, to allow a better identification of the model parameters, we 922 
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estimated the parameter t, such that t=Ma. We recovered M post-hoc by simply plugging-in t and a into 923 

the equation. Standard errors in parentheses, + p<0.1, * p<0.05, ** p<0.01, *** p<0.001. 924 

S7 Table. Model-free analysis, alternative model. Same analysis as in Table 1, while controlling for 925 

potential discontinuity in the model. MLE estimation with a Bernoulli model where the inverse link cannot 926 

drop below the chance level (0.5), such that 𝑝" = 0.5 + 0.5 𝛷(𝑥"′𝛽). Variables and specifications are identical 927 

to Table 1. Standard errors clustered on subject in parentheses, + p<0.1, * p<0.05, ** p<0.01, *** p<0.001. 928 


